279 lignes
7,3 Kio
Go
279 lignes
7,3 Kio
Go
|
// MIT License
|
||
|
//
|
||
|
// Copyright (c) 2017 José Santos <henrique_1609@me.com>
|
||
|
//
|
||
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
// of this software and associated documentation files (the "Software"), to deal
|
||
|
// in the Software without restriction, including without limitation the rights
|
||
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
// copies of the Software, and to permit persons to whom the Software is
|
||
|
// furnished to do so, subject to the following conditions:
|
||
|
//
|
||
|
// The above copyright notice and this permission notice shall be included in all
|
||
|
// copies or substantial portions of the Software.
|
||
|
//
|
||
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
// SOFTWARE.
|
||
|
|
||
|
package fastprinter
|
||
|
|
||
|
import (
|
||
|
"io"
|
||
|
"math"
|
||
|
)
|
||
|
|
||
|
type floatInfo struct {
|
||
|
mantbits uint
|
||
|
expbits uint
|
||
|
bias int
|
||
|
}
|
||
|
|
||
|
var (
|
||
|
float64info = floatInfo{52, 11, -1023}
|
||
|
floatNaN = []byte("Nan")
|
||
|
floatNinf = []byte("-Inf")
|
||
|
floatPinf = []byte("+Inf")
|
||
|
pool_floatBuffer = newByteSliceBufferPool(800)
|
||
|
)
|
||
|
|
||
|
func PrintFloat(w io.Writer, f float64) (int, error) {
|
||
|
return PrintFloatPrecision(w, f, -1)
|
||
|
}
|
||
|
|
||
|
func PrintFloatPrecision(dst io.Writer, val float64, prec int) (int, error) {
|
||
|
var bits uint64
|
||
|
var flt *floatInfo
|
||
|
|
||
|
bits = math.Float64bits(val)
|
||
|
flt = &float64info
|
||
|
|
||
|
neg := bits>>(flt.expbits+flt.mantbits) != 0
|
||
|
exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
|
||
|
mant := bits & (uint64(1)<<flt.mantbits - 1)
|
||
|
|
||
|
switch exp {
|
||
|
case 1<<flt.expbits - 1:
|
||
|
switch {
|
||
|
case mant != 0:
|
||
|
return dst.Write(floatNaN)
|
||
|
case neg:
|
||
|
return dst.Write(floatNinf)
|
||
|
default:
|
||
|
return dst.Write(floatPinf)
|
||
|
}
|
||
|
case 0:
|
||
|
// denormalized
|
||
|
exp++
|
||
|
default:
|
||
|
// add implicit top bit
|
||
|
mant |= uint64(1) << flt.mantbits
|
||
|
}
|
||
|
|
||
|
exp += flt.bias
|
||
|
var digs decimalSlice
|
||
|
ok := false
|
||
|
|
||
|
// Negative precision means "only as much as needed to be exact."
|
||
|
shortest := prec < 0
|
||
|
if shortest {
|
||
|
// Try Grisu3 algorithm.
|
||
|
f := new(extFloat)
|
||
|
lower, upper := f.AssignComputeBounds(mant, exp, neg, flt)
|
||
|
var buf [32]byte
|
||
|
digs.d = buf[:]
|
||
|
ok = f.ShortestDecimal(&digs, &lower, &upper)
|
||
|
if !ok {
|
||
|
return bigFtoa(dst, prec, neg, mant, exp, flt)
|
||
|
}
|
||
|
// Precision for shortest representation mode.
|
||
|
prec = max(digs.nd-digs.dp, 0)
|
||
|
}
|
||
|
if !ok {
|
||
|
return bigFtoa(dst, prec, neg, mant, exp, flt)
|
||
|
}
|
||
|
return fmtF(dst, neg, digs, prec)
|
||
|
}
|
||
|
|
||
|
// bigFtoa uses multiprecision computations to format a float.
|
||
|
func bigFtoa(dst io.Writer, prec int, neg bool, mant uint64, exp int, flt *floatInfo) (int, error) {
|
||
|
d := new(decimal)
|
||
|
d.Assign(mant)
|
||
|
d.Shift(exp - int(flt.mantbits))
|
||
|
var digs decimalSlice
|
||
|
shortest := prec < 0
|
||
|
if shortest {
|
||
|
roundShortest(d, mant, exp, flt)
|
||
|
digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
|
||
|
prec = max(digs.nd-digs.dp, 0)
|
||
|
} else {
|
||
|
d.Round(d.dp + prec)
|
||
|
digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
|
||
|
}
|
||
|
return fmtF(dst, neg, digs, prec)
|
||
|
}
|
||
|
|
||
|
// roundShortest rounds d (= mant * 2^exp) to the shortest number of digits
|
||
|
// that will let the original floating point value be precisely reconstructed.
|
||
|
func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
|
||
|
// If mantissa is zero, the number is zero; stop now.
|
||
|
if mant == 0 {
|
||
|
d.nd = 0
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Compute upper and lower such that any decimal number
|
||
|
// between upper and lower (possibly inclusive)
|
||
|
// will round to the original floating point number.
|
||
|
|
||
|
// We may see at once that the number is already shortest.
|
||
|
//
|
||
|
// Suppose d is not denormal, so that 2^exp <= d < 10^dp.
|
||
|
// The closest shorter number is at least 10^(dp-nd) away.
|
||
|
// The lower/upper bounds computed below are at distance
|
||
|
// at most 2^(exp-mantbits).
|
||
|
//
|
||
|
// So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits),
|
||
|
// or equivalently log2(10)*(dp-nd) > exp-mantbits.
|
||
|
// It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32).
|
||
|
minexp := flt.bias + 1 // minimum possible exponent
|
||
|
if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) {
|
||
|
// The number is already shortest.
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// d = mant << (exp - mantbits)
|
||
|
// Next highest floating point number is mant+1 << exp-mantbits.
|
||
|
// Our upper bound is halfway between, mant*2+1 << exp-mantbits-1.
|
||
|
upper := new(decimal)
|
||
|
upper.Assign(mant*2 + 1)
|
||
|
upper.Shift(exp - int(flt.mantbits) - 1)
|
||
|
|
||
|
// d = mant << (exp - mantbits)
|
||
|
// Next lowest floating point number is mant-1 << exp-mantbits,
|
||
|
// unless mant-1 drops the significant bit and exp is not the minimum exp,
|
||
|
// in which case the next lowest is mant*2-1 << exp-mantbits-1.
|
||
|
// Either way, call it mantlo << explo-mantbits.
|
||
|
// Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1.
|
||
|
var mantlo uint64
|
||
|
var explo int
|
||
|
if mant > 1<<flt.mantbits || exp == minexp {
|
||
|
mantlo = mant - 1
|
||
|
explo = exp
|
||
|
} else {
|
||
|
mantlo = mant*2 - 1
|
||
|
explo = exp - 1
|
||
|
}
|
||
|
lower := new(decimal)
|
||
|
lower.Assign(mantlo*2 + 1)
|
||
|
lower.Shift(explo - int(flt.mantbits) - 1)
|
||
|
|
||
|
// The upper and lower bounds are possible outputs only if
|
||
|
// the original mantissa is even, so that IEEE round-to-even
|
||
|
// would round to the original mantissa and not the neighbors.
|
||
|
inclusive := mant%2 == 0
|
||
|
|
||
|
// Now we can figure out the minimum number of digits required.
|
||
|
// Walk along until d has distinguished itself from upper and lower.
|
||
|
for i := 0; i < d.nd; i++ {
|
||
|
l := byte('0') // lower digit
|
||
|
if i < lower.nd {
|
||
|
l = lower.d[i]
|
||
|
}
|
||
|
m := d.d[i] // middle digit
|
||
|
u := byte('0') // upper digit
|
||
|
if i < upper.nd {
|
||
|
u = upper.d[i]
|
||
|
}
|
||
|
|
||
|
// Okay to round down (truncate) if lower has a different digit
|
||
|
// or if lower is inclusive and is exactly the result of rounding
|
||
|
// down (i.e., and we have reached the final digit of lower).
|
||
|
okdown := l != m || inclusive && i+1 == lower.nd
|
||
|
|
||
|
// Okay to round up if upper has a different digit and either upper
|
||
|
// is inclusive or upper is bigger than the result of rounding up.
|
||
|
okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd)
|
||
|
|
||
|
// If it's okay to do either, then round to the nearest one.
|
||
|
// If it's okay to do only one, do it.
|
||
|
switch {
|
||
|
case okdown && okup:
|
||
|
d.Round(i + 1)
|
||
|
return
|
||
|
case okdown:
|
||
|
d.RoundDown(i + 1)
|
||
|
return
|
||
|
case okup:
|
||
|
d.RoundUp(i + 1)
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
type decimalSlice struct {
|
||
|
d []byte
|
||
|
nd, dp int
|
||
|
neg bool
|
||
|
}
|
||
|
|
||
|
// %f: -ddddddd.ddddd
|
||
|
func fmtF(dst io.Writer, neg bool, d decimalSlice, prec int) (n int, err error) {
|
||
|
a := pool_floatBuffer.Get().(*byteSliceBuffer)
|
||
|
i := 0
|
||
|
|
||
|
// sign
|
||
|
if neg {
|
||
|
a.bytes[i] = '-'
|
||
|
i++
|
||
|
}
|
||
|
// integer, padded with zeros as needed.
|
||
|
if d.dp > 0 {
|
||
|
m := min(d.nd, d.dp)
|
||
|
copy(a.bytes[i:], d.d[:m])
|
||
|
i += m
|
||
|
for ; m < d.dp; m++ {
|
||
|
a.bytes[i] = '0'
|
||
|
i++
|
||
|
}
|
||
|
} else {
|
||
|
a.bytes[i] = '0'
|
||
|
i++
|
||
|
}
|
||
|
|
||
|
// fraction
|
||
|
if prec > 0 {
|
||
|
a.bytes[i] = '.'
|
||
|
i++
|
||
|
for j := 0; j < prec; j++ {
|
||
|
ch := byte('0')
|
||
|
if j := d.dp + j; 0 <= j && j < d.nd {
|
||
|
ch = d.d[j]
|
||
|
}
|
||
|
a.bytes[i] = ch
|
||
|
i++
|
||
|
}
|
||
|
}
|
||
|
n, err = dst.Write(a.bytes[0:i])
|
||
|
pool_floatBuffer.Put(a)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func min(a, b int) int {
|
||
|
if a < b {
|
||
|
return a
|
||
|
}
|
||
|
return b
|
||
|
}
|
||
|
|
||
|
func max(a, b int) int {
|
||
|
if a > b {
|
||
|
return a
|
||
|
}
|
||
|
return b
|
||
|
}
|