193 lignes
4,5 Kio
Go
193 lignes
4,5 Kio
Go
|
package cache
|
||
|
|
||
|
import (
|
||
|
"crypto/rand"
|
||
|
"math"
|
||
|
"math/big"
|
||
|
insecurerand "math/rand"
|
||
|
"os"
|
||
|
"runtime"
|
||
|
"time"
|
||
|
)
|
||
|
|
||
|
// This is an experimental and unexported (for now) attempt at making a cache
|
||
|
// with better algorithmic complexity than the standard one, namely by
|
||
|
// preventing write locks of the entire cache when an item is added. As of the
|
||
|
// time of writing, the overhead of selecting buckets results in cache
|
||
|
// operations being about twice as slow as for the standard cache with small
|
||
|
// total cache sizes, and faster for larger ones.
|
||
|
//
|
||
|
// See cache_test.go for a few benchmarks.
|
||
|
|
||
|
type unexportedShardedCache struct {
|
||
|
*shardedCache
|
||
|
}
|
||
|
|
||
|
type shardedCache struct {
|
||
|
seed uint32
|
||
|
m uint32
|
||
|
cs []*cache
|
||
|
janitor *shardedJanitor
|
||
|
}
|
||
|
|
||
|
// djb2 with better shuffling. 5x faster than FNV with the hash.Hash overhead.
|
||
|
func djb33(seed uint32, k string) uint32 {
|
||
|
var (
|
||
|
l = uint32(len(k))
|
||
|
d = 5381 + seed + l
|
||
|
i = uint32(0)
|
||
|
)
|
||
|
// Why is all this 5x faster than a for loop?
|
||
|
if l >= 4 {
|
||
|
for i < l-4 {
|
||
|
d = (d * 33) ^ uint32(k[i])
|
||
|
d = (d * 33) ^ uint32(k[i+1])
|
||
|
d = (d * 33) ^ uint32(k[i+2])
|
||
|
d = (d * 33) ^ uint32(k[i+3])
|
||
|
i += 4
|
||
|
}
|
||
|
}
|
||
|
switch l - i {
|
||
|
case 1:
|
||
|
case 2:
|
||
|
d = (d * 33) ^ uint32(k[i])
|
||
|
case 3:
|
||
|
d = (d * 33) ^ uint32(k[i])
|
||
|
d = (d * 33) ^ uint32(k[i+1])
|
||
|
case 4:
|
||
|
d = (d * 33) ^ uint32(k[i])
|
||
|
d = (d * 33) ^ uint32(k[i+1])
|
||
|
d = (d * 33) ^ uint32(k[i+2])
|
||
|
}
|
||
|
return d ^ (d >> 16)
|
||
|
}
|
||
|
|
||
|
func (sc *shardedCache) bucket(k string) *cache {
|
||
|
return sc.cs[djb33(sc.seed, k)%sc.m]
|
||
|
}
|
||
|
|
||
|
func (sc *shardedCache) Set(k string, x interface{}, d time.Duration) {
|
||
|
sc.bucket(k).Set(k, x, d)
|
||
|
}
|
||
|
|
||
|
func (sc *shardedCache) Add(k string, x interface{}, d time.Duration) error {
|
||
|
return sc.bucket(k).Add(k, x, d)
|
||
|
}
|
||
|
|
||
|
func (sc *shardedCache) Replace(k string, x interface{}, d time.Duration) error {
|
||
|
return sc.bucket(k).Replace(k, x, d)
|
||
|
}
|
||
|
|
||
|
func (sc *shardedCache) Get(k string) (interface{}, bool) {
|
||
|
return sc.bucket(k).Get(k)
|
||
|
}
|
||
|
|
||
|
func (sc *shardedCache) Increment(k string, n int64) error {
|
||
|
return sc.bucket(k).Increment(k, n)
|
||
|
}
|
||
|
|
||
|
func (sc *shardedCache) IncrementFloat(k string, n float64) error {
|
||
|
return sc.bucket(k).IncrementFloat(k, n)
|
||
|
}
|
||
|
|
||
|
func (sc *shardedCache) Decrement(k string, n int64) error {
|
||
|
return sc.bucket(k).Decrement(k, n)
|
||
|
}
|
||
|
|
||
|
func (sc *shardedCache) Delete(k string) {
|
||
|
sc.bucket(k).Delete(k)
|
||
|
}
|
||
|
|
||
|
func (sc *shardedCache) DeleteExpired() {
|
||
|
for _, v := range sc.cs {
|
||
|
v.DeleteExpired()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Returns the items in the cache. This may include items that have expired,
|
||
|
// but have not yet been cleaned up. If this is significant, the Expiration
|
||
|
// fields of the items should be checked. Note that explicit synchronization
|
||
|
// is needed to use a cache and its corresponding Items() return values at
|
||
|
// the same time, as the maps are shared.
|
||
|
func (sc *shardedCache) Items() []map[string]Item {
|
||
|
res := make([]map[string]Item, len(sc.cs))
|
||
|
for i, v := range sc.cs {
|
||
|
res[i] = v.Items()
|
||
|
}
|
||
|
return res
|
||
|
}
|
||
|
|
||
|
func (sc *shardedCache) Flush() {
|
||
|
for _, v := range sc.cs {
|
||
|
v.Flush()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
type shardedJanitor struct {
|
||
|
Interval time.Duration
|
||
|
stop chan bool
|
||
|
}
|
||
|
|
||
|
func (j *shardedJanitor) Run(sc *shardedCache) {
|
||
|
j.stop = make(chan bool)
|
||
|
tick := time.Tick(j.Interval)
|
||
|
for {
|
||
|
select {
|
||
|
case <-tick:
|
||
|
sc.DeleteExpired()
|
||
|
case <-j.stop:
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func stopShardedJanitor(sc *unexportedShardedCache) {
|
||
|
sc.janitor.stop <- true
|
||
|
}
|
||
|
|
||
|
func runShardedJanitor(sc *shardedCache, ci time.Duration) {
|
||
|
j := &shardedJanitor{
|
||
|
Interval: ci,
|
||
|
}
|
||
|
sc.janitor = j
|
||
|
go j.Run(sc)
|
||
|
}
|
||
|
|
||
|
func newShardedCache(n int, de time.Duration) *shardedCache {
|
||
|
max := big.NewInt(0).SetUint64(uint64(math.MaxUint32))
|
||
|
rnd, err := rand.Int(rand.Reader, max)
|
||
|
var seed uint32
|
||
|
if err != nil {
|
||
|
os.Stderr.Write([]byte("WARNING: go-cache's newShardedCache failed to read from the system CSPRNG (/dev/urandom or equivalent.) Your system's security may be compromised. Continuing with an insecure seed.\n"))
|
||
|
seed = insecurerand.Uint32()
|
||
|
} else {
|
||
|
seed = uint32(rnd.Uint64())
|
||
|
}
|
||
|
sc := &shardedCache{
|
||
|
seed: seed,
|
||
|
m: uint32(n),
|
||
|
cs: make([]*cache, n),
|
||
|
}
|
||
|
for i := 0; i < n; i++ {
|
||
|
c := &cache{
|
||
|
defaultExpiration: de,
|
||
|
items: map[string]Item{},
|
||
|
}
|
||
|
sc.cs[i] = c
|
||
|
}
|
||
|
return sc
|
||
|
}
|
||
|
|
||
|
func unexportedNewSharded(defaultExpiration, cleanupInterval time.Duration, shards int) *unexportedShardedCache {
|
||
|
if defaultExpiration == 0 {
|
||
|
defaultExpiration = -1
|
||
|
}
|
||
|
sc := newShardedCache(shards, defaultExpiration)
|
||
|
SC := &unexportedShardedCache{sc}
|
||
|
if cleanupInterval > 0 {
|
||
|
runShardedJanitor(sc, cleanupInterval)
|
||
|
runtime.SetFinalizer(SC, stopShardedJanitor)
|
||
|
}
|
||
|
return SC
|
||
|
}
|