Albirew/nyaa-pantsu
Archivé
1
0
Bifurcation 0
Ce dépôt a été archivé le 2022-05-07. Vous pouvez voir ses fichiers ou le cloner, mais pas ouvrir de ticket ou de demandes d'ajout, ni soumettre de changements.
nyaa-pantsu/vendor/github.com/RoaringBitmap/roaring/arraycontainer.go
akuma06 b2b48f61b0 Torrent Generation on not found error (#1600)
* [WIP] Torrent Generation on not found error
As asked in #1517, it allows on-the-fly torrent generation. Since it uses magnet links, it needs some time to connect to peers. So it can't be instant generation, we need the user to wait and try after a minute at least.

* Replace Fatal by simple error

* attempt at fixing travis

* del

* Add Anacrolyx dependency

* Add back difflib

* Remove .torrent suffix in the url example

* Add some explanations when file missing page shown

* Ignore downloads directory

* Either use cache (third-party site) or own download directory

* Wrong import

* If there is an error then it means we aren't generating a torrent file

May it be "torrent not found" or "We do not store torrent files" which are the two only existing errors for this page

* hash is never empty

* TorrentLink may be empty at times

So we add a /download/:hash link if it is

* Update README.md

* Made a mistake here, need to check if false

* Update en-us.all.json

* Update CHANGELOG.md

* Torrent file generation can be triggered by click on button if JS enabled

* Update download.go

* Update download.go

* Use c.JSON instead of text/template

* Return to default behavior if we don't generate the file

* Don't do the query if returned to default behavior

* Add "Could not generate torrent file" error

* Fix JS condition & lower delay until button updates

* Start download automatically once torrent file is generated

* Fix torrentFileExists() constantly returning false if external torrent download URL

* torrent-view-data is two tables instead of one

This allows the removal of useless things without any problem (e.g Website link), but also a better responsibe design since the previous one separated stats after a certain res looking very wonky

* CSS changes to go along

* Remove useless <b></b>

* Update main.css

* In torrentFileExists, check if filestorage path exists instead of looking at the domain in torrent link

When checking if the file is stored on another server i used to simply check if the domain name was inside the torrent link, but we can straight up check for filestorage length

* Fix JS of on-demand stat fetching

* ScrapeAge variable accessible through view.jet.html

Contains last scraped time in hours, is at -1 is torrent has never been scraped
Stats will get updated if it's either at -1 or above 1460 (2 months old)

* Refresh stats if older than two months OR unknown and older than 24h

Show last scraped date even if stats are unknown

* Add StatsObsolete variable to torrent

Indicating if:
- They can be shown
- They need to be updated

* Update scraped data even if Unknown, prevent users from trying to fetch stats every seconds

* Torrent file stored locally by default

* no need to do all of that if no filestorage

* fix filestorage path

* Fix torrent download button stuck on "Generating torrent file" at rare times

* fix some css rules that didn't work on IE

* Fix panic error

Seems like this error is a known bug from  anacrolyx torrent https://github.com/anacrolix/torrent/issues/83

To prevent it, I'm creating a single client and modifying the socket.go to make it not raise a panic but a simple error log.
2017-10-21 09:40:43 +02:00

940 lignes
23 Kio
Go

package roaring
import (
"fmt"
)
//go:generate msgp -unexported
type arrayContainer struct {
content []uint16
}
func (ac *arrayContainer) String() string {
s := "{"
for it := ac.getShortIterator(); it.hasNext(); {
s += fmt.Sprintf("%v, ", it.next())
}
return s + "}"
}
func (ac *arrayContainer) fillLeastSignificant16bits(x []uint32, i int, mask uint32) {
for k := 0; k < len(ac.content); k++ {
x[k+i] = uint32(ac.content[k]) | mask
}
}
func (ac *arrayContainer) getShortIterator() shortIterable {
return &shortIterator{ac.content, 0}
}
func (ac *arrayContainer) minimum() uint16 {
return ac.content[0] // assume not empty
}
func (ac *arrayContainer) maximum() uint16 {
return ac.content[len(ac.content)-1] // assume not empty
}
func (ac *arrayContainer) getSizeInBytes() int {
return ac.getCardinality() * 2
}
func (ac *arrayContainer) serializedSizeInBytes() int {
return ac.getCardinality() * 2
}
func arrayContainerSizeInBytes(card int) int {
return card * 2
}
// add the values in the range [firstOfRange,endx)
func (ac *arrayContainer) iaddRange(firstOfRange, endx int) container {
if firstOfRange >= endx {
return ac
}
indexstart := binarySearch(ac.content, uint16(firstOfRange))
if indexstart < 0 {
indexstart = -indexstart - 1
}
indexend := binarySearch(ac.content, uint16(endx-1))
if indexend < 0 {
indexend = -indexend - 1
} else {
indexend++
}
rangelength := endx - firstOfRange
newcardinality := indexstart + (ac.getCardinality() - indexend) + rangelength
if newcardinality > arrayDefaultMaxSize {
a := ac.toBitmapContainer()
return a.iaddRange(firstOfRange, endx)
}
if cap(ac.content) < newcardinality {
tmp := make([]uint16, newcardinality, newcardinality)
copy(tmp[:indexstart], ac.content[:indexstart])
copy(tmp[indexstart+rangelength:], ac.content[indexend:])
ac.content = tmp
} else {
ac.content = ac.content[:newcardinality]
copy(ac.content[indexstart+rangelength:], ac.content[indexend:])
}
for k := 0; k < rangelength; k++ {
ac.content[k+indexstart] = uint16(firstOfRange + k)
}
return ac
}
// remove the values in the range [firstOfRange,endx)
func (ac *arrayContainer) iremoveRange(firstOfRange, endx int) container {
if firstOfRange >= endx {
return ac
}
indexstart := binarySearch(ac.content, uint16(firstOfRange))
if indexstart < 0 {
indexstart = -indexstart - 1
}
indexend := binarySearch(ac.content, uint16(endx-1))
if indexend < 0 {
indexend = -indexend - 1
} else {
indexend++
}
rangelength := indexend - indexstart
answer := ac
copy(answer.content[indexstart:], ac.content[indexstart+rangelength:])
answer.content = answer.content[:ac.getCardinality()-rangelength]
return answer
}
// flip the values in the range [firstOfRange,endx)
func (ac *arrayContainer) not(firstOfRange, endx int) container {
if firstOfRange >= endx {
//p("arrayContainer.not(): exiting early with ac.clone()")
return ac.clone()
}
return ac.notClose(firstOfRange, endx-1) // remove everything in [firstOfRange,endx-1]
}
// flip the values in the range [firstOfRange,lastOfRange]
func (ac *arrayContainer) notClose(firstOfRange, lastOfRange int) container {
if firstOfRange > lastOfRange { // unlike add and remove, not uses an inclusive range [firstOfRange,lastOfRange]
//p("arrayContainer.notClose(): exiting early with ac.clone()")
return ac.clone()
}
// determine the span of array indices to be affected^M
startIndex := binarySearch(ac.content, uint16(firstOfRange))
//p("startIndex=%v", startIndex)
if startIndex < 0 {
startIndex = -startIndex - 1
}
lastIndex := binarySearch(ac.content, uint16(lastOfRange))
//p("lastIndex=%v", lastIndex)
if lastIndex < 0 {
lastIndex = -lastIndex - 2
}
currentValuesInRange := lastIndex - startIndex + 1
spanToBeFlipped := lastOfRange - firstOfRange + 1
newValuesInRange := spanToBeFlipped - currentValuesInRange
cardinalityChange := newValuesInRange - currentValuesInRange
newCardinality := len(ac.content) + cardinalityChange
//p("new card is %v", newCardinality)
if newCardinality > arrayDefaultMaxSize {
//p("new card over arrayDefaultMaxSize, so returning bitmap")
return ac.toBitmapContainer().not(firstOfRange, lastOfRange+1)
}
answer := newArrayContainer()
answer.content = make([]uint16, newCardinality, newCardinality) //a hack for sure
copy(answer.content, ac.content[:startIndex])
outPos := startIndex
inPos := startIndex
valInRange := firstOfRange
for ; valInRange <= lastOfRange && inPos <= lastIndex; valInRange++ {
if uint16(valInRange) != ac.content[inPos] {
answer.content[outPos] = uint16(valInRange)
outPos++
} else {
inPos++
}
}
for ; valInRange <= lastOfRange; valInRange++ {
answer.content[outPos] = uint16(valInRange)
outPos++
}
for i := lastIndex + 1; i < len(ac.content); i++ {
answer.content[outPos] = ac.content[i]
outPos++
}
answer.content = answer.content[:newCardinality]
return answer
}
func (ac *arrayContainer) equals(o container) bool {
srb, ok := o.(*arrayContainer)
if ok {
// Check if the containers are the same object.
if ac == srb {
return true
}
if len(srb.content) != len(ac.content) {
return false
}
for i, v := range ac.content {
if v != srb.content[i] {
return false
}
}
return true
}
// use generic comparison
bCard := o.getCardinality()
aCard := ac.getCardinality()
if bCard != aCard {
return false
}
ait := ac.getShortIterator()
bit := o.getShortIterator()
for ait.hasNext() {
if bit.next() != ait.next() {
return false
}
}
return true
}
func (ac *arrayContainer) toBitmapContainer() *bitmapContainer {
bc := newBitmapContainer()
bc.loadData(ac)
return bc
}
func (ac *arrayContainer) iadd(x uint16) (wasNew bool) {
// Special case adding to the end of the container.
l := len(ac.content)
if l > 0 && l < arrayDefaultMaxSize && ac.content[l-1] < x {
ac.content = append(ac.content, x)
return true
}
loc := binarySearch(ac.content, x)
if loc < 0 {
s := ac.content
i := -loc - 1
s = append(s, 0)
copy(s[i+1:], s[i:])
s[i] = x
ac.content = s
return true
}
return false
}
func (ac *arrayContainer) iaddReturnMinimized(x uint16) container {
// Special case adding to the end of the container.
l := len(ac.content)
if l > 0 && l < arrayDefaultMaxSize && ac.content[l-1] < x {
ac.content = append(ac.content, x)
return ac
}
loc := binarySearch(ac.content, x)
if loc < 0 {
if len(ac.content) >= arrayDefaultMaxSize {
a := ac.toBitmapContainer()
a.iadd(x)
return a
}
s := ac.content
i := -loc - 1
s = append(s, 0)
copy(s[i+1:], s[i:])
s[i] = x
ac.content = s
}
return ac
}
// iremoveReturnMinimized is allowed to change the return type to minimize storage.
func (ac *arrayContainer) iremoveReturnMinimized(x uint16) container {
ac.iremove(x)
return ac
}
func (ac *arrayContainer) iremove(x uint16) bool {
loc := binarySearch(ac.content, x)
if loc >= 0 {
s := ac.content
s = append(s[:loc], s[loc+1:]...)
ac.content = s
return true
}
return false
}
func (ac *arrayContainer) remove(x uint16) container {
out := &arrayContainer{make([]uint16, len(ac.content))}
copy(out.content, ac.content[:])
loc := binarySearch(out.content, x)
if loc >= 0 {
s := out.content
s = append(s[:loc], s[loc+1:]...)
out.content = s
}
return out
}
func (ac *arrayContainer) or(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.orArray(x)
case *bitmapContainer:
return x.orArray(ac)
case *runContainer16:
if x.isFull() {
return x.clone()
}
return x.orArray(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) orCardinality(a container) int {
switch x := a.(type) {
case *arrayContainer:
return ac.orArrayCardinality(x)
case *bitmapContainer:
return x.orArrayCardinality(ac)
case *runContainer16:
return x.orArrayCardinality(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) ior(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.iorArray(x)
case *bitmapContainer:
return ac.iorBitmap(x)
case *runContainer16:
if x.isFull() {
return x.clone()
}
return ac.iorRun16(x)
}
panic("unsupported container type")
}
func (ac *arrayContainer) iorArray(ac2 *arrayContainer) container {
bc1 := ac.toBitmapContainer()
bc2 := ac2.toBitmapContainer()
bc1.iorBitmap(bc2)
*ac = *newArrayContainerFromBitmap(bc1)
return ac
}
func (ac *arrayContainer) iorBitmap(bc2 *bitmapContainer) container {
bc1 := ac.toBitmapContainer()
bc1.iorBitmap(bc2)
*ac = *newArrayContainerFromBitmap(bc1)
return ac
}
func (ac *arrayContainer) iorRun16(rc *runContainer16) container {
bc1 := ac.toBitmapContainer()
bc2 := rc.toBitmapContainer()
bc1.iorBitmap(bc2)
*ac = *newArrayContainerFromBitmap(bc1)
return ac
}
func (ac *arrayContainer) lazyIOR(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.lazyIorArray(x)
case *bitmapContainer:
return ac.lazyIorBitmap(x)
case *runContainer16:
if x.isFull() {
return x.clone()
}
return ac.lazyIorRun16(x)
}
panic("unsupported container type")
}
func (ac *arrayContainer) lazyIorArray(ac2 *arrayContainer) container {
// TODO actually make this lazy
return ac.iorArray(ac2)
}
func (ac *arrayContainer) lazyIorBitmap(bc *bitmapContainer) container {
// TODO actually make this lazy
return ac.iorBitmap(bc)
}
func (ac *arrayContainer) lazyIorRun16(rc *runContainer16) container {
// TODO actually make this lazy
return ac.iorRun16(rc)
}
func (ac *arrayContainer) lazyOR(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.lazyorArray(x)
case *bitmapContainer:
return a.lazyOR(ac)
case *runContainer16:
if x.isFull() {
return x.clone()
}
return x.orArray(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) orArray(value2 *arrayContainer) container {
value1 := ac
maxPossibleCardinality := value1.getCardinality() + value2.getCardinality()
if maxPossibleCardinality > arrayDefaultMaxSize { // it could be a bitmap!
bc := newBitmapContainer()
for k := 0; k < len(value2.content); k++ {
v := value2.content[k]
i := uint(v) >> 6
mask := uint64(1) << (v % 64)
bc.bitmap[i] |= mask
}
for k := 0; k < len(ac.content); k++ {
v := ac.content[k]
i := uint(v) >> 6
mask := uint64(1) << (v % 64)
bc.bitmap[i] |= mask
}
bc.cardinality = int(popcntSlice(bc.bitmap))
if bc.cardinality <= arrayDefaultMaxSize {
return bc.toArrayContainer()
}
return bc
}
answer := newArrayContainerCapacity(maxPossibleCardinality)
nl := union2by2(value1.content, value2.content, answer.content)
answer.content = answer.content[:nl] // reslice to match actual used capacity
return answer
}
func (ac *arrayContainer) orArrayCardinality(value2 *arrayContainer) int {
return union2by2Cardinality(ac.content, value2.content)
}
func (ac *arrayContainer) lazyorArray(value2 *arrayContainer) container {
value1 := ac
maxPossibleCardinality := value1.getCardinality() + value2.getCardinality()
if maxPossibleCardinality > arrayLazyLowerBound { // it could be a bitmap!^M
bc := newBitmapContainer()
for k := 0; k < len(value2.content); k++ {
v := value2.content[k]
i := uint(v) >> 6
mask := uint64(1) << (v % 64)
bc.bitmap[i] |= mask
}
for k := 0; k < len(ac.content); k++ {
v := ac.content[k]
i := uint(v) >> 6
mask := uint64(1) << (v % 64)
bc.bitmap[i] |= mask
}
bc.cardinality = invalidCardinality
return bc
}
answer := newArrayContainerCapacity(maxPossibleCardinality)
nl := union2by2(value1.content, value2.content, answer.content)
answer.content = answer.content[:nl] // reslice to match actual used capacity
return answer
}
func (ac *arrayContainer) and(a container) container {
//p("ac.and() called")
switch x := a.(type) {
case *arrayContainer:
return ac.andArray(x)
case *bitmapContainer:
return x.and(ac)
case *runContainer16:
if x.isFull() {
return ac.clone()
}
return x.andArray(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) andCardinality(a container) int {
switch x := a.(type) {
case *arrayContainer:
return ac.andArrayCardinality(x)
case *bitmapContainer:
return x.andCardinality(ac)
case *runContainer16:
return x.andArrayCardinality(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) intersects(a container) bool {
switch x := a.(type) {
case *arrayContainer:
return ac.intersectsArray(x)
case *bitmapContainer:
return x.intersects(ac)
case *runContainer16:
return x.intersects(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) iand(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.iandArray(x)
case *bitmapContainer:
return ac.iandBitmap(x)
case *runContainer16:
if x.isFull() {
return ac.clone()
}
return ac.iandRun16(x)
}
panic("unsupported container type")
}
func (ac *arrayContainer) iandRun16(rc *runContainer16) container {
bc1 := ac.toBitmapContainer()
bc2 := newBitmapContainerFromRun(rc)
bc2.iandBitmap(bc1)
*ac = *newArrayContainerFromBitmap(bc2)
return ac
}
func (ac *arrayContainer) iandBitmap(bc *bitmapContainer) container {
pos := 0
c := ac.getCardinality()
for k := 0; k < c; k++ {
// branchless
v := ac.content[k]
ac.content[pos] = v
pos += int(bc.bitValue(v))
}
ac.content = ac.content[:pos]
return ac
}
func (ac *arrayContainer) xor(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.xorArray(x)
case *bitmapContainer:
return a.xor(ac)
case *runContainer16:
return x.xorArray(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) xorArray(value2 *arrayContainer) container {
value1 := ac
totalCardinality := value1.getCardinality() + value2.getCardinality()
if totalCardinality > arrayDefaultMaxSize { // it could be a bitmap!
bc := newBitmapContainer()
for k := 0; k < len(value2.content); k++ {
v := value2.content[k]
i := uint(v) >> 6
bc.bitmap[i] ^= (uint64(1) << (v % 64))
}
for k := 0; k < len(ac.content); k++ {
v := ac.content[k]
i := uint(v) >> 6
bc.bitmap[i] ^= (uint64(1) << (v % 64))
}
bc.computeCardinality()
if bc.cardinality <= arrayDefaultMaxSize {
return bc.toArrayContainer()
}
return bc
}
desiredCapacity := totalCardinality
answer := newArrayContainerCapacity(desiredCapacity)
length := exclusiveUnion2by2(value1.content, value2.content, answer.content)
answer.content = answer.content[:length]
return answer
}
func (ac *arrayContainer) andNot(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.andNotArray(x)
case *bitmapContainer:
return ac.andNotBitmap(x)
case *runContainer16:
return ac.andNotRun16(x)
}
panic("unsupported container type")
}
func (ac *arrayContainer) andNotRun16(rc *runContainer16) container {
acb := ac.toBitmapContainer()
rcb := rc.toBitmapContainer()
return acb.andNotBitmap(rcb)
}
func (ac *arrayContainer) iandNot(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.iandNotArray(x)
case *bitmapContainer:
return ac.iandNotBitmap(x)
case *runContainer16:
return ac.iandNotRun16(x)
}
panic("unsupported container type")
}
func (ac *arrayContainer) iandNotRun16(rc *runContainer16) container {
rcb := rc.toBitmapContainer()
acb := ac.toBitmapContainer()
acb.iandNotBitmapSurely(rcb)
*ac = *(acb.toArrayContainer())
return ac
}
func (ac *arrayContainer) andNotArray(value2 *arrayContainer) container {
value1 := ac
desiredcapacity := value1.getCardinality()
answer := newArrayContainerCapacity(desiredcapacity)
length := difference(value1.content, value2.content, answer.content)
answer.content = answer.content[:length]
return answer
}
func (ac *arrayContainer) iandNotArray(value2 *arrayContainer) container {
length := difference(ac.content, value2.content, ac.content)
ac.content = ac.content[:length]
return ac
}
func (ac *arrayContainer) andNotBitmap(value2 *bitmapContainer) container {
desiredcapacity := ac.getCardinality()
answer := newArrayContainerCapacity(desiredcapacity)
answer.content = answer.content[:desiredcapacity]
pos := 0
for _, v := range ac.content {
answer.content[pos] = v
pos += 1 - int(value2.bitValue(v))
}
answer.content = answer.content[:pos]
return answer
}
func (ac *arrayContainer) andBitmap(value2 *bitmapContainer) container {
desiredcapacity := ac.getCardinality()
answer := newArrayContainerCapacity(desiredcapacity)
answer.content = answer.content[:desiredcapacity]
pos := 0
for _, v := range ac.content {
answer.content[pos] = v
pos += int(value2.bitValue(v))
}
answer.content = answer.content[:pos]
return answer
}
func (ac *arrayContainer) iandNotBitmap(value2 *bitmapContainer) container {
pos := 0
for _, v := range ac.content {
ac.content[pos] = v
pos += 1 - int(value2.bitValue(v))
}
ac.content = ac.content[:pos]
return ac
}
func copyOf(array []uint16, size int) []uint16 {
result := make([]uint16, size)
for i, x := range array {
if i == size {
break
}
result[i] = x
}
return result
}
// flip the values in the range [firstOfRange,endx)
func (ac *arrayContainer) inot(firstOfRange, endx int) container {
if firstOfRange >= endx {
return ac
}
return ac.inotClose(firstOfRange, endx-1) // remove everything in [firstOfRange,endx-1]
}
// flip the values in the range [firstOfRange,lastOfRange]
func (ac *arrayContainer) inotClose(firstOfRange, lastOfRange int) container {
//p("ac.inotClose() starting")
if firstOfRange > lastOfRange { // unlike add and remove, not uses an inclusive range [firstOfRange,lastOfRange]
return ac
}
// determine the span of array indices to be affected
startIndex := binarySearch(ac.content, uint16(firstOfRange))
if startIndex < 0 {
startIndex = -startIndex - 1
}
lastIndex := binarySearch(ac.content, uint16(lastOfRange))
if lastIndex < 0 {
lastIndex = -lastIndex - 1 - 1
}
currentValuesInRange := lastIndex - startIndex + 1
spanToBeFlipped := lastOfRange - firstOfRange + 1
newValuesInRange := spanToBeFlipped - currentValuesInRange
buffer := make([]uint16, newValuesInRange)
cardinalityChange := newValuesInRange - currentValuesInRange
newCardinality := len(ac.content) + cardinalityChange
if cardinalityChange > 0 {
if newCardinality > len(ac.content) {
if newCardinality > arrayDefaultMaxSize {
//p("ac.inotClose() converting to bitmap and doing inot there")
bcRet := ac.toBitmapContainer()
bcRet.inot(firstOfRange, lastOfRange+1)
*ac = *bcRet.toArrayContainer()
return bcRet
}
ac.content = copyOf(ac.content, newCardinality)
}
base := lastIndex + 1
copy(ac.content[lastIndex+1+cardinalityChange:], ac.content[base:base+len(ac.content)-1-lastIndex])
ac.negateRange(buffer, startIndex, lastIndex, firstOfRange, lastOfRange+1)
} else { // no expansion needed
ac.negateRange(buffer, startIndex, lastIndex, firstOfRange, lastOfRange+1)
if cardinalityChange < 0 {
for i := startIndex + newValuesInRange; i < newCardinality; i++ {
ac.content[i] = ac.content[i-cardinalityChange]
}
}
}
ac.content = ac.content[:newCardinality]
//p("bottom of ac.inotClose(): returning ac")
return ac
}
func (ac *arrayContainer) negateRange(buffer []uint16, startIndex, lastIndex, startRange, lastRange int) {
// compute the negation into buffer
outPos := 0
inPos := startIndex // value here always >= valInRange,
// until it is exhausted
// n.b., we can start initially exhausted.
valInRange := startRange
for ; valInRange < lastRange && inPos <= lastIndex; valInRange++ {
if uint16(valInRange) != ac.content[inPos] {
buffer[outPos] = uint16(valInRange)
outPos++
} else {
inPos++
}
}
// if there are extra items (greater than the biggest
// pre-existing one in range), buffer them
for ; valInRange < lastRange; valInRange++ {
buffer[outPos] = uint16(valInRange)
outPos++
}
if outPos != len(buffer) {
panic("negateRange: internal bug")
}
for i, item := range buffer {
ac.content[i+startIndex] = item
}
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func (ac *arrayContainer) isFull() bool {
return false
}
func (ac *arrayContainer) andArray(value2 *arrayContainer) container {
desiredcapacity := min(ac.getCardinality(), value2.getCardinality())
answer := newArrayContainerCapacity(desiredcapacity)
length := intersection2by2(
ac.content,
value2.content,
answer.content)
answer.content = answer.content[:length]
return answer
}
func (ac *arrayContainer) andArrayCardinality(value2 *arrayContainer) int {
return intersection2by2Cardinality(
ac.content,
value2.content)
}
func (ac *arrayContainer) intersectsArray(value2 *arrayContainer) bool {
return intersects2by2(
ac.content,
value2.content)
}
func (ac *arrayContainer) iandArray(value2 *arrayContainer) container {
length := intersection2by2(
ac.content,
value2.content,
ac.content)
ac.content = ac.content[:length]
return ac
}
func (ac *arrayContainer) getCardinality() int {
return len(ac.content)
}
func (ac *arrayContainer) rank(x uint16) int {
answer := binarySearch(ac.content, x)
if answer >= 0 {
return answer + 1
}
return -answer - 1
}
func (ac *arrayContainer) selectInt(x uint16) int {
return int(ac.content[x])
}
func (ac *arrayContainer) clone() container {
ptr := arrayContainer{make([]uint16, len(ac.content))}
copy(ptr.content, ac.content[:])
return &ptr
}
func (ac *arrayContainer) contains(x uint16) bool {
return binarySearch(ac.content, x) >= 0
}
func (ac *arrayContainer) loadData(bitmapContainer *bitmapContainer) {
ac.content = make([]uint16, bitmapContainer.cardinality, bitmapContainer.cardinality)
bitmapContainer.fillArray(ac.content)
}
func newArrayContainer() *arrayContainer {
p := new(arrayContainer)
return p
}
func newArrayContainerFromBitmap(bc *bitmapContainer) *arrayContainer {
ac := &arrayContainer{}
ac.loadData(bc)
return ac
}
func newArrayContainerCapacity(size int) *arrayContainer {
p := new(arrayContainer)
p.content = make([]uint16, 0, size)
return p
}
func newArrayContainerSize(size int) *arrayContainer {
p := new(arrayContainer)
p.content = make([]uint16, size, size)
return p
}
func newArrayContainerRange(firstOfRun, lastOfRun int) *arrayContainer {
valuesInRange := lastOfRun - firstOfRun + 1
this := newArrayContainerCapacity(valuesInRange)
for i := 0; i < valuesInRange; i++ {
this.content = append(this.content, uint16(firstOfRun+i))
}
return this
}
func (ac *arrayContainer) numberOfRuns() (nr int) {
n := len(ac.content)
var runlen uint16
var cur, prev uint16
switch n {
case 0:
return 0
case 1:
return 1
default:
for i := 1; i < n; i++ {
prev = ac.content[i-1]
cur = ac.content[i]
if cur == prev+1 {
runlen++
} else {
if cur < prev {
panic("then fundamental arrayContainer assumption of sorted ac.content was broken")
}
if cur == prev {
panic("then fundamental arrayContainer assumption of deduplicated content was broken")
} else {
nr++
runlen = 0
}
}
}
nr++
}
return
}
// convert to run or array *if needed*
func (ac *arrayContainer) toEfficientContainer() container {
numRuns := ac.numberOfRuns()
sizeAsRunContainer := runContainer16SerializedSizeInBytes(numRuns)
sizeAsBitmapContainer := bitmapContainerSizeInBytes()
card := int(ac.getCardinality())
sizeAsArrayContainer := arrayContainerSizeInBytes(card)
if sizeAsRunContainer <= min(sizeAsBitmapContainer, sizeAsArrayContainer) {
return newRunContainer16FromArray(ac)
}
if card <= arrayDefaultMaxSize {
return ac
}
return ac.toBitmapContainer()
}
func (ac *arrayContainer) containerType() contype {
return arrayContype
}