Albirew/nyaa-pantsu
Archivé
1
0
Bifurcation 0
Ce dépôt a été archivé le 2022-05-07. Vous pouvez voir ses fichiers ou le cloner, mais pas ouvrir de ticket ou de demandes d'ajout, ni soumettre de changements.
nyaa-pantsu/vendor/github.com/ryszard/goskiplist/skiplist/skiplist.go
akuma06 a41f938cec Add Godep support (#758)
As we have seen, dependencies version can prevent the build. We should
user lock versions on dependencies that we know work:
* Packages are vendored
* Add Godep support
* Added addtional install step in readme
* Fix travis build error
2017-05-26 13:07:22 +02:00

635 lignes
16 Kio
Go

// Copyright 2012 Google Inc. All rights reserved.
// Author: Ric Szopa (Ryszard) <ryszard.szopa@gmail.com>
// Package skiplist implements skip list based maps and sets.
//
// Skip lists are a data structure that can be used in place of
// balanced trees. Skip lists use probabilistic balancing rather than
// strictly enforced balancing and as a result the algorithms for
// insertion and deletion in skip lists are much simpler and
// significantly faster than equivalent algorithms for balanced trees.
//
// Skip lists were first described in Pugh, William (June 1990). "Skip
// lists: a probabilistic alternative to balanced
// trees". Communications of the ACM 33 (6): 668–676
package skiplist
import (
"math/rand"
)
// TODO(ryszard):
// - A separately seeded source of randomness
// p is the fraction of nodes with level i pointers that also have
// level i+1 pointers. p equal to 1/4 is a good value from the point
// of view of speed and space requirements. If variability of running
// times is a concern, 1/2 is a better value for p.
const p = 0.25
const DefaultMaxLevel = 32
// A node is a container for key-value pairs that are stored in a skip
// list.
type node struct {
forward []*node
backward *node
key, value interface{}
}
// next returns the next node in the skip list containing n.
func (n *node) next() *node {
if len(n.forward) == 0 {
return nil
}
return n.forward[0]
}
// previous returns the previous node in the skip list containing n.
func (n *node) previous() *node {
return n.backward
}
// hasNext returns true if n has a next node.
func (n *node) hasNext() bool {
return n.next() != nil
}
// hasPrevious returns true if n has a previous node.
func (n *node) hasPrevious() bool {
return n.previous() != nil
}
// A SkipList is a map-like data structure that maintains an ordered
// collection of key-value pairs. Insertion, lookup, and deletion are
// all O(log n) operations. A SkipList can efficiently store up to
// 2^MaxLevel items.
//
// To iterate over a skip list (where s is a
// *SkipList):
//
// for i := s.Iterator(); i.Next(); {
// // do something with i.Key() and i.Value()
// }
type SkipList struct {
lessThan func(l, r interface{}) bool
header *node
footer *node
length int
// MaxLevel determines how many items the SkipList can store
// efficiently (2^MaxLevel).
//
// It is safe to increase MaxLevel to accomodate more
// elements. If you decrease MaxLevel and the skip list
// already contains nodes on higer levels, the effective
// MaxLevel will be the greater of the new MaxLevel and the
// level of the highest node.
//
// A SkipList with MaxLevel equal to 0 is equivalent to a
// standard linked list and will not have any of the nice
// properties of skip lists (probably not what you want).
MaxLevel int
}
// Len returns the length of s.
func (s *SkipList) Len() int {
return s.length
}
// Iterator is an interface that you can use to iterate through the
// skip list (in its entirety or fragments). For an use example, see
// the documentation of SkipList.
//
// Key and Value return the key and the value of the current node.
type Iterator interface {
// Next returns true if the iterator contains subsequent elements
// and advances its state to the next element if that is possible.
Next() (ok bool)
// Previous returns true if the iterator contains previous elements
// and rewinds its state to the previous element if that is possible.
Previous() (ok bool)
// Key returns the current key.
Key() interface{}
// Value returns the current value.
Value() interface{}
// Seek reduces iterative seek costs for searching forward into the Skip List
// by remarking the range of keys over which it has scanned before. If the
// requested key occurs prior to the point, the Skip List will start searching
// as a safeguard. It returns true if the key is within the known range of
// the list.
Seek(key interface{}) (ok bool)
// Close this iterator to reap resources associated with it. While not
// strictly required, it will provide extra hints for the garbage collector.
Close()
}
type iter struct {
current *node
key interface{}
list *SkipList
value interface{}
}
func (i iter) Key() interface{} {
return i.key
}
func (i iter) Value() interface{} {
return i.value
}
func (i *iter) Next() bool {
if !i.current.hasNext() {
return false
}
i.current = i.current.next()
i.key = i.current.key
i.value = i.current.value
return true
}
func (i *iter) Previous() bool {
if !i.current.hasPrevious() {
return false
}
i.current = i.current.previous()
i.key = i.current.key
i.value = i.current.value
return true
}
func (i *iter) Seek(key interface{}) (ok bool) {
current := i.current
list := i.list
// If the existing iterator outside of the known key range, we should set the
// position back to the beginning of the list.
if current == nil {
current = list.header
}
// If the target key occurs before the current key, we cannot take advantage
// of the heretofore spent traversal cost to find it; resetting back to the
// beginning is the safest choice.
if current.key != nil && list.lessThan(key, current.key) {
current = list.header
}
// We should back up to the so that we can seek to our present value if that
// is requested for whatever reason.
if current.backward == nil {
current = list.header
} else {
current = current.backward
}
current = list.getPath(current, nil, key)
if current == nil {
return
}
i.current = current
i.key = current.key
i.value = current.value
return true
}
func (i *iter) Close() {
i.key = nil
i.value = nil
i.current = nil
i.list = nil
}
type rangeIterator struct {
iter
upperLimit interface{}
lowerLimit interface{}
}
func (i *rangeIterator) Next() bool {
if !i.current.hasNext() {
return false
}
next := i.current.next()
if !i.list.lessThan(next.key, i.upperLimit) {
return false
}
i.current = i.current.next()
i.key = i.current.key
i.value = i.current.value
return true
}
func (i *rangeIterator) Previous() bool {
if !i.current.hasPrevious() {
return false
}
previous := i.current.previous()
if i.list.lessThan(previous.key, i.lowerLimit) {
return false
}
i.current = i.current.previous()
i.key = i.current.key
i.value = i.current.value
return true
}
func (i *rangeIterator) Seek(key interface{}) (ok bool) {
if i.list.lessThan(key, i.lowerLimit) {
return
} else if !i.list.lessThan(key, i.upperLimit) {
return
}
return i.iter.Seek(key)
}
func (i *rangeIterator) Close() {
i.iter.Close()
i.upperLimit = nil
i.lowerLimit = nil
}
// Iterator returns an Iterator that will go through all elements s.
func (s *SkipList) Iterator() Iterator {
return &iter{
current: s.header,
list: s,
}
}
// Seek returns a bidirectional iterator starting with the first element whose
// key is greater or equal to key; otherwise, a nil iterator is returned.
func (s *SkipList) Seek(key interface{}) Iterator {
current := s.getPath(s.header, nil, key)
if current == nil {
return nil
}
return &iter{
current: current,
key: current.key,
list: s,
value: current.value,
}
}
// SeekToFirst returns a bidirectional iterator starting from the first element
// in the list if the list is populated; otherwise, a nil iterator is returned.
func (s *SkipList) SeekToFirst() Iterator {
if s.length == 0 {
return nil
}
current := s.header.next()
return &iter{
current: current,
key: current.key,
list: s,
value: current.value,
}
}
// SeekToLast returns a bidirectional iterator starting from the last element
// in the list if the list is populated; otherwise, a nil iterator is returned.
func (s *SkipList) SeekToLast() Iterator {
current := s.footer
if current == nil {
return nil
}
return &iter{
current: current,
key: current.key,
list: s,
value: current.value,
}
}
// Range returns an iterator that will go through all the
// elements of the skip list that are greater or equal than from, but
// less than to.
func (s *SkipList) Range(from, to interface{}) Iterator {
start := s.getPath(s.header, nil, from)
return &rangeIterator{
iter: iter{
current: &node{
forward: []*node{start},
backward: start,
},
list: s,
},
upperLimit: to,
lowerLimit: from,
}
}
func (s *SkipList) level() int {
return len(s.header.forward) - 1
}
func maxInt(x, y int) int {
if x > y {
return x
}
return y
}
func (s *SkipList) effectiveMaxLevel() int {
return maxInt(s.level(), s.MaxLevel)
}
// Returns a new random level.
func (s SkipList) randomLevel() (n int) {
for n = 0; n < s.effectiveMaxLevel() && rand.Float64() < p; n++ {
}
return
}
// Get returns the value associated with key from s (nil if the key is
// not present in s). The second return value is true when the key is
// present.
func (s *SkipList) Get(key interface{}) (value interface{}, ok bool) {
candidate := s.getPath(s.header, nil, key)
if candidate == nil || candidate.key != key {
return nil, false
}
return candidate.value, true
}
// GetGreaterOrEqual finds the node whose key is greater than or equal
// to min. It returns its value, its actual key, and whether such a
// node is present in the skip list.
func (s *SkipList) GetGreaterOrEqual(min interface{}) (actualKey, value interface{}, ok bool) {
candidate := s.getPath(s.header, nil, min)
if candidate != nil {
return candidate.key, candidate.value, true
}
return nil, nil, false
}
// getPath populates update with nodes that constitute the path to the
// node that may contain key. The candidate node will be returned. If
// update is nil, it will be left alone (the candidate node will still
// be returned). If update is not nil, but it doesn't have enough
// slots for all the nodes in the path, getPath will panic.
func (s *SkipList) getPath(current *node, update []*node, key interface{}) *node {
depth := len(current.forward) - 1
for i := depth; i >= 0; i-- {
for current.forward[i] != nil && s.lessThan(current.forward[i].key, key) {
current = current.forward[i]
}
if update != nil {
update[i] = current
}
}
return current.next()
}
// Sets set the value associated with key in s.
func (s *SkipList) Set(key, value interface{}) {
if key == nil {
panic("goskiplist: nil keys are not supported")
}
// s.level starts from 0, so we need to allocate one.
update := make([]*node, s.level()+1, s.effectiveMaxLevel()+1)
candidate := s.getPath(s.header, update, key)
if candidate != nil && candidate.key == key {
candidate.value = value
return
}
newLevel := s.randomLevel()
if currentLevel := s.level(); newLevel > currentLevel {
// there are no pointers for the higher levels in
// update. Header should be there. Also add higher
// level links to the header.
for i := currentLevel + 1; i <= newLevel; i++ {
update = append(update, s.header)
s.header.forward = append(s.header.forward, nil)
}
}
newNode := &node{
forward: make([]*node, newLevel+1, s.effectiveMaxLevel()+1),
key: key,
value: value,
}
if previous := update[0]; previous.key != nil {
newNode.backward = previous
}
for i := 0; i <= newLevel; i++ {
newNode.forward[i] = update[i].forward[i]
update[i].forward[i] = newNode
}
s.length++
if newNode.forward[0] != nil {
if newNode.forward[0].backward != newNode {
newNode.forward[0].backward = newNode
}
}
if s.footer == nil || s.lessThan(s.footer.key, key) {
s.footer = newNode
}
}
// Delete removes the node with the given key.
//
// It returns the old value and whether the node was present.
func (s *SkipList) Delete(key interface{}) (value interface{}, ok bool) {
if key == nil {
panic("goskiplist: nil keys are not supported")
}
update := make([]*node, s.level()+1, s.effectiveMaxLevel())
candidate := s.getPath(s.header, update, key)
if candidate == nil || candidate.key != key {
return nil, false
}
previous := candidate.backward
if s.footer == candidate {
s.footer = previous
}
next := candidate.next()
if next != nil {
next.backward = previous
}
for i := 0; i <= s.level() && update[i].forward[i] == candidate; i++ {
update[i].forward[i] = candidate.forward[i]
}
for s.level() > 0 && s.header.forward[s.level()] == nil {
s.header.forward = s.header.forward[:s.level()]
}
s.length--
return candidate.value, true
}
// NewCustomMap returns a new SkipList that will use lessThan as the
// comparison function. lessThan should define a linear order on keys
// you intend to use with the SkipList.
func NewCustomMap(lessThan func(l, r interface{}) bool) *SkipList {
return &SkipList{
lessThan: lessThan,
header: &node{
forward: []*node{nil},
},
MaxLevel: DefaultMaxLevel,
}
}
// Ordered is an interface which can be linearly ordered by the
// LessThan method, whereby this instance is deemed to be less than
// other. Additionally, Ordered instances should behave properly when
// compared using == and !=.
type Ordered interface {
LessThan(other Ordered) bool
}
// New returns a new SkipList.
//
// Its keys must implement the Ordered interface.
func New() *SkipList {
comparator := func(left, right interface{}) bool {
return left.(Ordered).LessThan(right.(Ordered))
}
return NewCustomMap(comparator)
}
// NewIntKey returns a SkipList that accepts int keys.
func NewIntMap() *SkipList {
return NewCustomMap(func(l, r interface{}) bool {
return l.(int) < r.(int)
})
}
// NewStringMap returns a SkipList that accepts string keys.
func NewStringMap() *SkipList {
return NewCustomMap(func(l, r interface{}) bool {
return l.(string) < r.(string)
})
}
// Set is an ordered set data structure.
//
// Its elements must implement the Ordered interface. It uses a
// SkipList for storage, and it gives you similar performance
// guarantees.
//
// To iterate over a set (where s is a *Set):
//
// for i := s.Iterator(); i.Next(); {
// // do something with i.Key().
// // i.Value() will be nil.
// }
type Set struct {
skiplist SkipList
}
// NewSet returns a new Set.
func NewSet() *Set {
comparator := func(left, right interface{}) bool {
return left.(Ordered).LessThan(right.(Ordered))
}
return NewCustomSet(comparator)
}
// NewCustomSet returns a new Set that will use lessThan as the
// comparison function. lessThan should define a linear order on
// elements you intend to use with the Set.
func NewCustomSet(lessThan func(l, r interface{}) bool) *Set {
return &Set{skiplist: SkipList{
lessThan: lessThan,
header: &node{
forward: []*node{nil},
},
MaxLevel: DefaultMaxLevel,
}}
}
// NewIntSet returns a new Set that accepts int elements.
func NewIntSet() *Set {
return NewCustomSet(func(l, r interface{}) bool {
return l.(int) < r.(int)
})
}
// NewStringSet returns a new Set that accepts string elements.
func NewStringSet() *Set {
return NewCustomSet(func(l, r interface{}) bool {
return l.(string) < r.(string)
})
}
// Add adds key to s.
func (s *Set) Add(key interface{}) {
s.skiplist.Set(key, nil)
}
// Remove tries to remove key from the set. It returns true if key was
// present.
func (s *Set) Remove(key interface{}) (ok bool) {
_, ok = s.skiplist.Delete(key)
return ok
}
// Len returns the length of the set.
func (s *Set) Len() int {
return s.skiplist.Len()
}
// Contains returns true if key is present in s.
func (s *Set) Contains(key interface{}) bool {
_, ok := s.skiplist.Get(key)
return ok
}
func (s *Set) Iterator() Iterator {
return s.skiplist.Iterator()
}
// Range returns an iterator that will go through all the elements of
// the set that are greater or equal than from, but less than to.
func (s *Set) Range(from, to interface{}) Iterator {
return s.skiplist.Range(from, to)
}
// SetMaxLevel sets MaxLevel in the underlying skip list.
func (s *Set) SetMaxLevel(newMaxLevel int) {
s.skiplist.MaxLevel = newMaxLevel
}
// GetMaxLevel returns MaxLevel fo the underlying skip list.
func (s *Set) GetMaxLevel() int {
return s.skiplist.MaxLevel
}