5991a21818
* First batch of changes for the refactor Added the support of gin in routes and other services/utils Begining implementation of JetHTML * Remove os folder * Move scrapers to own repo * Second batch of changes All .jet.html are the working templates. You can now test this PR, the index Page and upload works. If you want to complete the other html templates, you're welcome * Move captcha to util * Move uploadService to utils * Use govalidator instead of regex * Third batch of changes All the front end should as previously. I also fixed some minor things unrelated to the refactor (mostly style issues on static pages) Now errors can be accessed by importing the "errors" helpers and using the `yield errors(name="xxx")` command in templates. Same for infos. Templates are now more hierarchized with a base template "base.jet.html" which is extended depending on the context in "index_site" or "index_admin" layouts. Those layouts are extended than in every pages. Other helpers are captcha to render a captcha `yield captcha(captchaid="xxx")` And also csrf, with the command `yield csrf_field()` To translate, you don't have anymore to do `call $.T "xxx"`, you just have to do `T("xxx")`. Pages for the website part are in folders in the folder "templates/site". Pages for the admin part are in "templates/admin". Layouts are separated in "templates/layouts". Helpers and menu are in "templates/layouts/helpers" and "templates/layouts/menu". Error pages should be put in "templates/errors" * Added test on templates When adding a new template, you have to tell to template_test.go, the context of the new template (if it doesn't use the common context) * Panel admin works Now the templating part should work. The PR can now be fully tested. I think we should push the templating PR and do the routes/controllers/removal of services in another branch. So we know that this one is functional * Updated dependencies * Fixed test for modelhelper * Fix testing for commentlist * Fix travis :') * Just renamed router and removed network * Applying same SEO fix * Update form_validator.go * Added back regexp package
668 lignes
20 Kio
Go
668 lignes
20 Kio
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package fastprinter
|
|
|
|
// An extFloat represents an extended floating-point number, with more
|
|
// precision than a float64. It does not try to save bits: the
|
|
// number represented by the structure is mant*(2^exp), with a negative
|
|
// sign if neg is true.
|
|
type extFloat struct {
|
|
mant uint64
|
|
exp int
|
|
neg bool
|
|
}
|
|
|
|
// Powers of ten taken from double-conversion library.
|
|
// http://code.google.com/p/double-conversion/
|
|
const (
|
|
firstPowerOfTen = -348
|
|
stepPowerOfTen = 8
|
|
)
|
|
|
|
var smallPowersOfTen = [...]extFloat{
|
|
{1 << 63, -63, false}, // 1
|
|
{0xa << 60, -60, false}, // 1e1
|
|
{0x64 << 57, -57, false}, // 1e2
|
|
{0x3e8 << 54, -54, false}, // 1e3
|
|
{0x2710 << 50, -50, false}, // 1e4
|
|
{0x186a0 << 47, -47, false}, // 1e5
|
|
{0xf4240 << 44, -44, false}, // 1e6
|
|
{0x989680 << 40, -40, false}, // 1e7
|
|
}
|
|
|
|
var powersOfTen = [...]extFloat{
|
|
{0xfa8fd5a0081c0288, -1220, false}, // 10^-348
|
|
{0xbaaee17fa23ebf76, -1193, false}, // 10^-340
|
|
{0x8b16fb203055ac76, -1166, false}, // 10^-332
|
|
{0xcf42894a5dce35ea, -1140, false}, // 10^-324
|
|
{0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
|
|
{0xe61acf033d1a45df, -1087, false}, // 10^-308
|
|
{0xab70fe17c79ac6ca, -1060, false}, // 10^-300
|
|
{0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
|
|
{0xbe5691ef416bd60c, -1007, false}, // 10^-284
|
|
{0x8dd01fad907ffc3c, -980, false}, // 10^-276
|
|
{0xd3515c2831559a83, -954, false}, // 10^-268
|
|
{0x9d71ac8fada6c9b5, -927, false}, // 10^-260
|
|
{0xea9c227723ee8bcb, -901, false}, // 10^-252
|
|
{0xaecc49914078536d, -874, false}, // 10^-244
|
|
{0x823c12795db6ce57, -847, false}, // 10^-236
|
|
{0xc21094364dfb5637, -821, false}, // 10^-228
|
|
{0x9096ea6f3848984f, -794, false}, // 10^-220
|
|
{0xd77485cb25823ac7, -768, false}, // 10^-212
|
|
{0xa086cfcd97bf97f4, -741, false}, // 10^-204
|
|
{0xef340a98172aace5, -715, false}, // 10^-196
|
|
{0xb23867fb2a35b28e, -688, false}, // 10^-188
|
|
{0x84c8d4dfd2c63f3b, -661, false}, // 10^-180
|
|
{0xc5dd44271ad3cdba, -635, false}, // 10^-172
|
|
{0x936b9fcebb25c996, -608, false}, // 10^-164
|
|
{0xdbac6c247d62a584, -582, false}, // 10^-156
|
|
{0xa3ab66580d5fdaf6, -555, false}, // 10^-148
|
|
{0xf3e2f893dec3f126, -529, false}, // 10^-140
|
|
{0xb5b5ada8aaff80b8, -502, false}, // 10^-132
|
|
{0x87625f056c7c4a8b, -475, false}, // 10^-124
|
|
{0xc9bcff6034c13053, -449, false}, // 10^-116
|
|
{0x964e858c91ba2655, -422, false}, // 10^-108
|
|
{0xdff9772470297ebd, -396, false}, // 10^-100
|
|
{0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92
|
|
{0xf8a95fcf88747d94, -343, false}, // 10^-84
|
|
{0xb94470938fa89bcf, -316, false}, // 10^-76
|
|
{0x8a08f0f8bf0f156b, -289, false}, // 10^-68
|
|
{0xcdb02555653131b6, -263, false}, // 10^-60
|
|
{0x993fe2c6d07b7fac, -236, false}, // 10^-52
|
|
{0xe45c10c42a2b3b06, -210, false}, // 10^-44
|
|
{0xaa242499697392d3, -183, false}, // 10^-36
|
|
{0xfd87b5f28300ca0e, -157, false}, // 10^-28
|
|
{0xbce5086492111aeb, -130, false}, // 10^-20
|
|
{0x8cbccc096f5088cc, -103, false}, // 10^-12
|
|
{0xd1b71758e219652c, -77, false}, // 10^-4
|
|
{0x9c40000000000000, -50, false}, // 10^4
|
|
{0xe8d4a51000000000, -24, false}, // 10^12
|
|
{0xad78ebc5ac620000, 3, false}, // 10^20
|
|
{0x813f3978f8940984, 30, false}, // 10^28
|
|
{0xc097ce7bc90715b3, 56, false}, // 10^36
|
|
{0x8f7e32ce7bea5c70, 83, false}, // 10^44
|
|
{0xd5d238a4abe98068, 109, false}, // 10^52
|
|
{0x9f4f2726179a2245, 136, false}, // 10^60
|
|
{0xed63a231d4c4fb27, 162, false}, // 10^68
|
|
{0xb0de65388cc8ada8, 189, false}, // 10^76
|
|
{0x83c7088e1aab65db, 216, false}, // 10^84
|
|
{0xc45d1df942711d9a, 242, false}, // 10^92
|
|
{0x924d692ca61be758, 269, false}, // 10^100
|
|
{0xda01ee641a708dea, 295, false}, // 10^108
|
|
{0xa26da3999aef774a, 322, false}, // 10^116
|
|
{0xf209787bb47d6b85, 348, false}, // 10^124
|
|
{0xb454e4a179dd1877, 375, false}, // 10^132
|
|
{0x865b86925b9bc5c2, 402, false}, // 10^140
|
|
{0xc83553c5c8965d3d, 428, false}, // 10^148
|
|
{0x952ab45cfa97a0b3, 455, false}, // 10^156
|
|
{0xde469fbd99a05fe3, 481, false}, // 10^164
|
|
{0xa59bc234db398c25, 508, false}, // 10^172
|
|
{0xf6c69a72a3989f5c, 534, false}, // 10^180
|
|
{0xb7dcbf5354e9bece, 561, false}, // 10^188
|
|
{0x88fcf317f22241e2, 588, false}, // 10^196
|
|
{0xcc20ce9bd35c78a5, 614, false}, // 10^204
|
|
{0x98165af37b2153df, 641, false}, // 10^212
|
|
{0xe2a0b5dc971f303a, 667, false}, // 10^220
|
|
{0xa8d9d1535ce3b396, 694, false}, // 10^228
|
|
{0xfb9b7cd9a4a7443c, 720, false}, // 10^236
|
|
{0xbb764c4ca7a44410, 747, false}, // 10^244
|
|
{0x8bab8eefb6409c1a, 774, false}, // 10^252
|
|
{0xd01fef10a657842c, 800, false}, // 10^260
|
|
{0x9b10a4e5e9913129, 827, false}, // 10^268
|
|
{0xe7109bfba19c0c9d, 853, false}, // 10^276
|
|
{0xac2820d9623bf429, 880, false}, // 10^284
|
|
{0x80444b5e7aa7cf85, 907, false}, // 10^292
|
|
{0xbf21e44003acdd2d, 933, false}, // 10^300
|
|
{0x8e679c2f5e44ff8f, 960, false}, // 10^308
|
|
{0xd433179d9c8cb841, 986, false}, // 10^316
|
|
{0x9e19db92b4e31ba9, 1013, false}, // 10^324
|
|
{0xeb96bf6ebadf77d9, 1039, false}, // 10^332
|
|
{0xaf87023b9bf0ee6b, 1066, false}, // 10^340
|
|
}
|
|
|
|
// floatBits returns the bits of the float64 that best approximates
|
|
// the extFloat passed as receiver. Overflow is set to true if
|
|
// the resulting float64 is ±Inf.
|
|
func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) {
|
|
f.Normalize()
|
|
|
|
exp := f.exp + 63
|
|
|
|
// Exponent too small.
|
|
if exp < flt.bias+1 {
|
|
n := flt.bias + 1 - exp
|
|
f.mant >>= uint(n)
|
|
exp += n
|
|
}
|
|
|
|
// Extract 1+flt.mantbits bits from the 64-bit mantissa.
|
|
mant := f.mant >> (63 - flt.mantbits)
|
|
if f.mant&(1<<(62-flt.mantbits)) != 0 {
|
|
// Round up.
|
|
mant += 1
|
|
}
|
|
|
|
// Rounding might have added a bit; shift down.
|
|
if mant == 2<<flt.mantbits {
|
|
mant >>= 1
|
|
exp++
|
|
}
|
|
|
|
// Infinities.
|
|
if exp-flt.bias >= 1<<flt.expbits-1 {
|
|
// ±Inf
|
|
mant = 0
|
|
exp = 1<<flt.expbits - 1 + flt.bias
|
|
overflow = true
|
|
} else if mant&(1<<flt.mantbits) == 0 {
|
|
// Denormalized?
|
|
exp = flt.bias
|
|
}
|
|
// Assemble bits.
|
|
bits = mant & (uint64(1)<<flt.mantbits - 1)
|
|
bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
|
|
if f.neg {
|
|
bits |= 1 << (flt.mantbits + flt.expbits)
|
|
}
|
|
return
|
|
}
|
|
|
|
// AssignComputeBounds sets f to the floating point value
|
|
// defined by mant, exp and precision given by flt. It returns
|
|
// lower, upper such that any number in the closed interval
|
|
// [lower, upper] is converted back to the same floating point number.
|
|
func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) {
|
|
f.mant = mant
|
|
f.exp = exp - int(flt.mantbits)
|
|
f.neg = neg
|
|
if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) {
|
|
// An exact integer
|
|
f.mant >>= uint(-f.exp)
|
|
f.exp = 0
|
|
return *f, *f
|
|
}
|
|
expBiased := exp - flt.bias
|
|
|
|
upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
|
|
if mant != 1<<flt.mantbits || expBiased == 1 {
|
|
lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
|
|
} else {
|
|
lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
|
|
}
|
|
return
|
|
}
|
|
|
|
// Normalize normalizes f so that the highest bit of the mantissa is
|
|
// set, and returns the number by which the mantissa was left-shifted.
|
|
func (f *extFloat) Normalize() (shift uint) {
|
|
mant, exp := f.mant, f.exp
|
|
if mant == 0 {
|
|
return 0
|
|
}
|
|
if mant>>(64-32) == 0 {
|
|
mant <<= 32
|
|
exp -= 32
|
|
}
|
|
if mant>>(64-16) == 0 {
|
|
mant <<= 16
|
|
exp -= 16
|
|
}
|
|
if mant>>(64-8) == 0 {
|
|
mant <<= 8
|
|
exp -= 8
|
|
}
|
|
if mant>>(64-4) == 0 {
|
|
mant <<= 4
|
|
exp -= 4
|
|
}
|
|
if mant>>(64-2) == 0 {
|
|
mant <<= 2
|
|
exp -= 2
|
|
}
|
|
if mant>>(64-1) == 0 {
|
|
mant <<= 1
|
|
exp -= 1
|
|
}
|
|
shift = uint(f.exp - exp)
|
|
f.mant, f.exp = mant, exp
|
|
return
|
|
}
|
|
|
|
// Multiply sets f to the product f*g: the result is correctly rounded,
|
|
// but not normalized.
|
|
func (f *extFloat) Multiply(g extFloat) {
|
|
fhi, flo := f.mant>>32, uint64(uint32(f.mant))
|
|
ghi, glo := g.mant>>32, uint64(uint32(g.mant))
|
|
|
|
// Cross products.
|
|
cross1 := fhi * glo
|
|
cross2 := flo * ghi
|
|
|
|
// f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo
|
|
f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)
|
|
rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)
|
|
// Round up.
|
|
rem += (1 << 31)
|
|
|
|
f.mant += (rem >> 32)
|
|
f.exp = f.exp + g.exp + 64
|
|
}
|
|
|
|
var uint64pow10 = [...]uint64{
|
|
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
|
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
|
}
|
|
|
|
// AssignDecimal sets f to an approximate value mantissa*10^exp. It
|
|
// reports whether the value represented by f is guaranteed to be the
|
|
// best approximation of d after being rounded to a float64 or
|
|
// float32 depending on flt.
|
|
func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) {
|
|
const uint64digits = 19
|
|
const errorscale = 8
|
|
errors := 0 // An upper bound for error, computed in errorscale*ulp.
|
|
if trunc {
|
|
// the decimal number was truncated.
|
|
errors += errorscale / 2
|
|
}
|
|
|
|
f.mant = mantissa
|
|
f.exp = 0
|
|
f.neg = neg
|
|
|
|
// Multiply by powers of ten.
|
|
i := (exp10 - firstPowerOfTen) / stepPowerOfTen
|
|
if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
|
|
return false
|
|
}
|
|
adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
|
|
|
|
// We multiply by exp%step
|
|
if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] {
|
|
// We can multiply the mantissa exactly.
|
|
f.mant *= uint64pow10[adjExp]
|
|
f.Normalize()
|
|
} else {
|
|
f.Normalize()
|
|
f.Multiply(smallPowersOfTen[adjExp])
|
|
errors += errorscale / 2
|
|
}
|
|
|
|
// We multiply by 10 to the exp - exp%step.
|
|
f.Multiply(powersOfTen[i])
|
|
if errors > 0 {
|
|
errors += 1
|
|
}
|
|
errors += errorscale / 2
|
|
|
|
// Normalize
|
|
shift := f.Normalize()
|
|
errors <<= shift
|
|
|
|
// Now f is a good approximation of the decimal.
|
|
// Check whether the error is too large: that is, if the mantissa
|
|
// is perturbated by the error, the resulting float64 will change.
|
|
// The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
|
|
//
|
|
// In many cases the approximation will be good enough.
|
|
denormalExp := flt.bias - 63
|
|
var extrabits uint
|
|
if f.exp <= denormalExp {
|
|
// f.mant * 2^f.exp is smaller than 2^(flt.bias+1).
|
|
extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp))
|
|
} else {
|
|
extrabits = uint(63 - flt.mantbits)
|
|
}
|
|
|
|
halfway := uint64(1) << (extrabits - 1)
|
|
mant_extra := f.mant & (1<<extrabits - 1)
|
|
|
|
// Do a signed comparison here! If the error estimate could make
|
|
// the mantissa round differently for the conversion to double,
|
|
// then we can't give a definite answer.
|
|
if int64(halfway)-int64(errors) < int64(mant_extra) &&
|
|
int64(mant_extra) < int64(halfway)+int64(errors) {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Frexp10 is an analogue of math.Frexp for decimal powers. It scales
|
|
// f by an approximate power of ten 10^-exp, and returns exp10, so
|
|
// that f*10^exp10 has the same value as the old f, up to an ulp,
|
|
// as well as the index of 10^-exp in the powersOfTen table.
|
|
func (f *extFloat) frexp10() (exp10, index int) {
|
|
// The constants expMin and expMax constrain the final value of the
|
|
// binary exponent of f. We want a small integral part in the result
|
|
// because finding digits of an integer requires divisions, whereas
|
|
// digits of the fractional part can be found by repeatedly multiplying
|
|
// by 10.
|
|
const expMin = -60
|
|
const expMax = -32
|
|
// Find power of ten such that x * 10^n has a binary exponent
|
|
// between expMin and expMax.
|
|
approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28.
|
|
i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
|
|
Loop:
|
|
for {
|
|
exp := f.exp + powersOfTen[i].exp + 64
|
|
switch {
|
|
case exp < expMin:
|
|
i++
|
|
case exp > expMax:
|
|
i--
|
|
default:
|
|
break Loop
|
|
}
|
|
}
|
|
// Apply the desired decimal shift on f. It will have exponent
|
|
// in the desired range. This is multiplication by 10^-exp10.
|
|
f.Multiply(powersOfTen[i])
|
|
|
|
return -(firstPowerOfTen + i*stepPowerOfTen), i
|
|
}
|
|
|
|
// frexp10Many applies a common shift by a power of ten to a, b, c.
|
|
func frexp10Many(a, b, c *extFloat) (exp10 int) {
|
|
exp10, i := c.frexp10()
|
|
a.Multiply(powersOfTen[i])
|
|
b.Multiply(powersOfTen[i])
|
|
return
|
|
}
|
|
|
|
// FixedDecimal stores in d the first n significant digits
|
|
// of the decimal representation of f. It returns false
|
|
// if it cannot be sure of the answer.
|
|
func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool {
|
|
if f.mant == 0 {
|
|
d.nd = 0
|
|
d.dp = 0
|
|
d.neg = f.neg
|
|
return true
|
|
}
|
|
if n == 0 {
|
|
panic("strconv: internal error: extFloat.FixedDecimal called with n == 0")
|
|
}
|
|
// Multiply by an appropriate power of ten to have a reasonable
|
|
// number to process.
|
|
f.Normalize()
|
|
exp10, _ := f.frexp10()
|
|
|
|
shift := uint(-f.exp)
|
|
integer := uint32(f.mant >> shift)
|
|
fraction := f.mant - (uint64(integer) << shift)
|
|
ε := uint64(1) // ε is the uncertainty we have on the mantissa of f.
|
|
|
|
// Write exactly n digits to d.
|
|
needed := n // how many digits are left to write.
|
|
integerDigits := 0 // the number of decimal digits of integer.
|
|
pow10 := uint64(1) // the power of ten by which f was scaled.
|
|
for i, pow := 0, uint64(1); i < 20; i++ {
|
|
if pow > uint64(integer) {
|
|
integerDigits = i
|
|
break
|
|
}
|
|
pow *= 10
|
|
}
|
|
rest := integer
|
|
if integerDigits > needed {
|
|
// the integral part is already large, trim the last digits.
|
|
pow10 = uint64pow10[integerDigits-needed]
|
|
integer /= uint32(pow10)
|
|
rest -= integer * uint32(pow10)
|
|
} else {
|
|
rest = 0
|
|
}
|
|
|
|
// Write the digits of integer: the digits of rest are omitted.
|
|
var buf [32]byte
|
|
pos := len(buf)
|
|
for v := integer; v > 0; {
|
|
v1 := v / 10
|
|
v -= 10 * v1
|
|
pos--
|
|
buf[pos] = byte(v + '0')
|
|
v = v1
|
|
}
|
|
for i := pos; i < len(buf); i++ {
|
|
d.d[i-pos] = buf[i]
|
|
}
|
|
nd := len(buf) - pos
|
|
d.nd = nd
|
|
d.dp = integerDigits + exp10
|
|
needed -= nd
|
|
|
|
if needed > 0 {
|
|
if rest != 0 || pow10 != 1 {
|
|
panic("strconv: internal error, rest != 0 but needed > 0")
|
|
}
|
|
// Emit digits for the fractional part. Each time, 10*fraction
|
|
// fits in a uint64 without overflow.
|
|
for needed > 0 {
|
|
fraction *= 10
|
|
ε *= 10 // the uncertainty scales as we multiply by ten.
|
|
if 2*ε > 1<<shift {
|
|
// the error is so large it could modify which digit to write, abort.
|
|
return false
|
|
}
|
|
digit := fraction >> shift
|
|
d.d[nd] = byte(digit + '0')
|
|
fraction -= digit << shift
|
|
nd++
|
|
needed--
|
|
}
|
|
d.nd = nd
|
|
}
|
|
|
|
// We have written a truncation of f (a numerator / 10^d.dp). The remaining part
|
|
// can be interpreted as a small number (< 1) to be added to the last digit of the
|
|
// numerator.
|
|
//
|
|
// If rest > 0, the amount is:
|
|
// (rest<<shift | fraction) / (pow10 << shift)
|
|
// fraction being known with a ±ε uncertainty.
|
|
// The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64.
|
|
//
|
|
// If rest = 0, pow10 == 1 and the amount is
|
|
// fraction / (1 << shift)
|
|
// fraction being known with a ±ε uncertainty.
|
|
//
|
|
// We pass this information to the rounding routine for adjustment.
|
|
|
|
ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε)
|
|
if !ok {
|
|
return false
|
|
}
|
|
// Trim trailing zeros.
|
|
for i := d.nd - 1; i >= 0; i-- {
|
|
if d.d[i] != '0' {
|
|
d.nd = i + 1
|
|
break
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// adjustLastDigitFixed assumes d contains the representation of the integral part
|
|
// of some number, whose fractional part is num / (den << shift). The numerator
|
|
// num is only known up to an uncertainty of size ε, assumed to be less than
|
|
// (den << shift)/2.
|
|
//
|
|
// It will increase the last digit by one to account for correct rounding, typically
|
|
// when the fractional part is greater than 1/2, and will return false if ε is such
|
|
// that no correct answer can be given.
|
|
func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool {
|
|
if num > den<<shift {
|
|
panic("strconv: num > den<<shift in adjustLastDigitFixed")
|
|
}
|
|
if 2*ε > den<<shift {
|
|
panic("strconv: ε > (den<<shift)/2")
|
|
}
|
|
if 2*(num+ε) < den<<shift {
|
|
return true
|
|
}
|
|
if 2*(num-ε) > den<<shift {
|
|
// increment d by 1.
|
|
i := d.nd - 1
|
|
for ; i >= 0; i-- {
|
|
if d.d[i] == '9' {
|
|
d.nd--
|
|
} else {
|
|
break
|
|
}
|
|
}
|
|
if i < 0 {
|
|
d.d[0] = '1'
|
|
d.nd = 1
|
|
d.dp++
|
|
} else {
|
|
d.d[i]++
|
|
}
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// ShortestDecimal stores in d the shortest decimal representation of f
|
|
// which belongs to the open interval (lower, upper), where f is supposed
|
|
// to lie. It returns false whenever the result is unsure. The implementation
|
|
// uses the Grisu3 algorithm.
|
|
func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool {
|
|
if f.mant == 0 {
|
|
d.nd = 0
|
|
d.dp = 0
|
|
d.neg = f.neg
|
|
return true
|
|
}
|
|
if f.exp == 0 && *lower == *f && *lower == *upper {
|
|
// an exact integer.
|
|
var buf [24]byte
|
|
n := len(buf) - 1
|
|
for v := f.mant; v > 0; {
|
|
v1 := v / 10
|
|
v -= 10 * v1
|
|
buf[n] = byte(v + '0')
|
|
n--
|
|
v = v1
|
|
}
|
|
nd := len(buf) - n - 1
|
|
for i := 0; i < nd; i++ {
|
|
d.d[i] = buf[n+1+i]
|
|
}
|
|
d.nd, d.dp = nd, nd
|
|
for d.nd > 0 && d.d[d.nd-1] == '0' {
|
|
d.nd--
|
|
}
|
|
if d.nd == 0 {
|
|
d.dp = 0
|
|
}
|
|
d.neg = f.neg
|
|
return true
|
|
}
|
|
upper.Normalize()
|
|
// Uniformize exponents.
|
|
if f.exp > upper.exp {
|
|
f.mant <<= uint(f.exp - upper.exp)
|
|
f.exp = upper.exp
|
|
}
|
|
if lower.exp > upper.exp {
|
|
lower.mant <<= uint(lower.exp - upper.exp)
|
|
lower.exp = upper.exp
|
|
}
|
|
|
|
exp10 := frexp10Many(lower, f, upper)
|
|
// Take a safety margin due to rounding in frexp10Many, but we lose precision.
|
|
upper.mant++
|
|
lower.mant--
|
|
|
|
// The shortest representation of f is either rounded up or down, but
|
|
// in any case, it is a truncation of upper.
|
|
shift := uint(-upper.exp)
|
|
integer := uint32(upper.mant >> shift)
|
|
fraction := upper.mant - (uint64(integer) << shift)
|
|
|
|
// How far we can go down from upper until the result is wrong.
|
|
allowance := upper.mant - lower.mant
|
|
// How far we should go to get a very precise result.
|
|
targetDiff := upper.mant - f.mant
|
|
|
|
// Count integral digits: there are at most 10.
|
|
var integerDigits int
|
|
for i, pow := 0, uint64(1); i < 20; i++ {
|
|
if pow > uint64(integer) {
|
|
integerDigits = i
|
|
break
|
|
}
|
|
pow *= 10
|
|
}
|
|
for i := 0; i < integerDigits; i++ {
|
|
pow := uint64pow10[integerDigits-i-1]
|
|
digit := integer / uint32(pow)
|
|
d.d[i] = byte(digit + '0')
|
|
integer -= digit * uint32(pow)
|
|
// evaluate whether we should stop.
|
|
if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
|
|
d.nd = i + 1
|
|
d.dp = integerDigits + exp10
|
|
d.neg = f.neg
|
|
// Sometimes allowance is so large the last digit might need to be
|
|
// decremented to get closer to f.
|
|
return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
|
|
}
|
|
}
|
|
d.nd = integerDigits
|
|
d.dp = d.nd + exp10
|
|
d.neg = f.neg
|
|
|
|
// Compute digits of the fractional part. At each step fraction does not
|
|
// overflow. The choice of minExp implies that fraction is less than 2^60.
|
|
var digit int
|
|
multiplier := uint64(1)
|
|
for {
|
|
fraction *= 10
|
|
multiplier *= 10
|
|
digit = int(fraction >> shift)
|
|
d.d[d.nd] = byte(digit + '0')
|
|
d.nd++
|
|
fraction -= uint64(digit) << shift
|
|
if fraction < allowance*multiplier {
|
|
// We are in the admissible range. Note that if allowance is about to
|
|
// overflow, that is, allowance > 2^64/10, the condition is automatically
|
|
// true due to the limited range of fraction.
|
|
return adjustLastDigit(d,
|
|
fraction, targetDiff*multiplier, allowance*multiplier,
|
|
1<<shift, multiplier*2)
|
|
}
|
|
}
|
|
}
|
|
|
|
// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
|
|
// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
|
|
// It assumes that a decimal digit is worth ulpDecimal*ε, and that
|
|
// all data is known with a error estimate of ulpBinary*ε.
|
|
func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
|
|
if ulpDecimal < 2*ulpBinary {
|
|
// Approximation is too wide.
|
|
return false
|
|
}
|
|
for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
|
|
d.d[d.nd-1]--
|
|
currentDiff += ulpDecimal
|
|
}
|
|
if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
|
|
// we have two choices, and don't know what to do.
|
|
return false
|
|
}
|
|
if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
|
|
// we went too far
|
|
return false
|
|
}
|
|
if d.nd == 1 && d.d[0] == '0' {
|
|
// the number has actually reached zero.
|
|
d.nd = 0
|
|
d.dp = 0
|
|
}
|
|
return true
|
|
}
|