suyu/src/core/hle/kernel/k_page_table_base.cpp

5806 lignes
243 KiB
C++

// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/scope_exit.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/hle/kernel/k_address_space_info.h"
#include "core/hle/kernel/k_page_table_base.h"
#include "core/hle/kernel/k_scoped_resource_reservation.h"
#include "core/hle/kernel/k_system_resource.h"
namespace Kernel {
namespace {
class KScopedLightLockPair {
SUYU_NON_COPYABLE(KScopedLightLockPair);
SUYU_NON_MOVEABLE(KScopedLightLockPair);
private:
KLightLock* m_lower;
KLightLock* m_upper;
public:
KScopedLightLockPair(KLightLock& lhs, KLightLock& rhs) {
// Ensure our locks are in a consistent order.
if (std::addressof(lhs) <= std::addressof(rhs)) {
m_lower = std::addressof(lhs);
m_upper = std::addressof(rhs);
} else {
m_lower = std::addressof(rhs);
m_upper = std::addressof(lhs);
}
// Acquire both locks.
m_lower->Lock();
if (m_lower != m_upper) {
m_upper->Lock();
}
}
~KScopedLightLockPair() {
// Unlock the upper lock.
if (m_upper != nullptr && m_upper != m_lower) {
m_upper->Unlock();
}
// Unlock the lower lock.
if (m_lower != nullptr) {
m_lower->Unlock();
}
}
public:
// Utility.
void TryUnlockHalf(KLightLock& lock) {
// Only allow unlocking if the lock is half the pair.
if (m_lower != m_upper) {
// We want to be sure the lock is one we own.
if (m_lower == std::addressof(lock)) {
lock.Unlock();
m_lower = nullptr;
} else if (m_upper == std::addressof(lock)) {
lock.Unlock();
m_upper = nullptr;
}
}
}
};
template <typename AddressType>
void InvalidateInstructionCache(KernelCore& kernel, KPageTableBase* table, AddressType addr,
u64 size) {
// TODO: lock the process list
for (auto& process : kernel.GetProcessList()) {
if (std::addressof(process->GetPageTable().GetBasePageTable()) != table) {
continue;
}
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
auto* interface = process->GetArmInterface(i);
if (interface) {
interface->InvalidateCacheRange(GetInteger(addr), size);
}
}
}
}
void ClearBackingRegion(Core::System& system, KPhysicalAddress addr, u64 size, u32 fill_value) {
system.DeviceMemory().buffer.ClearBackingRegion(GetInteger(addr) - Core::DramMemoryMap::Base,
size, fill_value);
}
template <typename AddressType>
Result InvalidateDataCache(AddressType addr, u64 size) {
R_SUCCEED();
}
template <typename AddressType>
Result StoreDataCache(AddressType addr, u64 size) {
R_SUCCEED();
}
template <typename AddressType>
Result FlushDataCache(AddressType addr, u64 size) {
R_SUCCEED();
}
constexpr Common::MemoryPermission ConvertToMemoryPermission(KMemoryPermission perm) {
Common::MemoryPermission perms{};
if (True(perm & KMemoryPermission::UserRead)) {
perms |= Common::MemoryPermission::Read;
}
if (True(perm & KMemoryPermission::UserWrite)) {
perms |= Common::MemoryPermission::Write;
}
#ifdef HAS_NCE
if (True(perm & KMemoryPermission::UserExecute)) {
perms |= Common::MemoryPermission::Execute;
}
#endif
return perms;
}
} // namespace
void KPageTableBase::MemoryRange::Open() {
// If the range contains heap pages, open them.
if (this->IsHeap()) {
m_kernel.MemoryManager().Open(this->GetAddress(), this->GetSize() / PageSize);
}
}
void KPageTableBase::MemoryRange::Close() {
// If the range contains heap pages, close them.
if (this->IsHeap()) {
m_kernel.MemoryManager().Close(this->GetAddress(), this->GetSize() / PageSize);
}
}
KPageTableBase::KPageTableBase(KernelCore& kernel)
: m_kernel(kernel), m_system(kernel.System()), m_general_lock(kernel),
m_map_physical_memory_lock(kernel), m_device_map_lock(kernel) {}
KPageTableBase::~KPageTableBase() = default;
Result KPageTableBase::InitializeForKernel(bool is_64_bit, KVirtualAddress start,
KVirtualAddress end, Core::Memory::Memory& memory) {
// Initialize our members.
m_address_space_width =
static_cast<u32>(is_64_bit ? Common::BitSize<u64>() : Common::BitSize<u32>());
m_address_space_start = KProcessAddress(GetInteger(start));
m_address_space_end = KProcessAddress(GetInteger(end));
m_is_kernel = true;
m_enable_aslr = true;
m_enable_device_address_space_merge = false;
m_heap_region_start = 0;
m_heap_region_end = 0;
m_current_heap_end = 0;
m_alias_region_start = 0;
m_alias_region_end = 0;
m_stack_region_start = 0;
m_stack_region_end = 0;
m_kernel_map_region_start = 0;
m_kernel_map_region_end = 0;
m_alias_code_region_start = 0;
m_alias_code_region_end = 0;
m_code_region_start = 0;
m_code_region_end = 0;
m_max_heap_size = 0;
m_mapped_physical_memory_size = 0;
m_mapped_unsafe_physical_memory = 0;
m_mapped_insecure_memory = 0;
m_mapped_ipc_server_memory = 0;
m_alias_region_extra_size = 0;
m_memory_block_slab_manager =
m_kernel.GetSystemSystemResource().GetMemoryBlockSlabManagerPointer();
m_block_info_manager = m_kernel.GetSystemSystemResource().GetBlockInfoManagerPointer();
m_resource_limit = m_kernel.GetSystemResourceLimit();
m_allocate_option = KMemoryManager::EncodeOption(KMemoryManager::Pool::System,
KMemoryManager::Direction::FromFront);
m_heap_fill_value = MemoryFillValue_Zero;
m_ipc_fill_value = MemoryFillValue_Zero;
m_stack_fill_value = MemoryFillValue_Zero;
m_cached_physical_linear_region = nullptr;
m_cached_physical_heap_region = nullptr;
// Initialize our implementation.
m_impl = std::make_unique<Common::PageTable>();
m_impl->Resize(m_address_space_width, PageBits);
// Set the tracking memory.
m_memory = std::addressof(memory);
// Initialize our memory block manager.
R_RETURN(m_memory_block_manager.Initialize(m_address_space_start, m_address_space_end,
m_memory_block_slab_manager));
}
Result KPageTableBase::InitializeForProcess(Svc::CreateProcessFlag as_type, bool enable_aslr,
bool enable_das_merge, bool from_back,
KMemoryManager::Pool pool, KProcessAddress code_address,
size_t code_size, KSystemResource* system_resource,
KResourceLimit* resource_limit,
Core::Memory::Memory& memory,
KProcessAddress aslr_space_start) {
// Calculate region extents.
const size_t as_width = GetAddressSpaceWidth(as_type);
const KProcessAddress start = 0;
const KProcessAddress end = (1ULL << as_width);
// Validate the region.
ASSERT(start <= code_address);
ASSERT(code_address < code_address + code_size);
ASSERT(code_address + code_size - 1 <= end - 1);
// Define helpers.
auto GetSpaceStart = [&](KAddressSpaceInfo::Type type) {
return KAddressSpaceInfo::GetAddressSpaceStart(m_address_space_width, type);
};
auto GetSpaceSize = [&](KAddressSpaceInfo::Type type) {
return KAddressSpaceInfo::GetAddressSpaceSize(m_address_space_width, type);
};
// Set our bit width and heap/alias sizes.
m_address_space_width = static_cast<u32>(GetAddressSpaceWidth(as_type));
size_t alias_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Alias);
size_t heap_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Heap);
// Adjust heap/alias size if we don't have an alias region.
if ((as_type & Svc::CreateProcessFlag::AddressSpaceMask) ==
Svc::CreateProcessFlag::AddressSpace32BitWithoutAlias) {
heap_region_size += alias_region_size;
alias_region_size = 0;
}
// Set code regions and determine remaining sizes.
KProcessAddress process_code_start;
KProcessAddress process_code_end;
size_t stack_region_size;
size_t kernel_map_region_size;
if (m_address_space_width == 39) {
alias_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Alias);
heap_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Heap);
stack_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Stack);
kernel_map_region_size = GetSpaceSize(KAddressSpaceInfo::Type::MapSmall);
m_code_region_start = m_address_space_start + aslr_space_start +
GetSpaceStart(KAddressSpaceInfo::Type::Map39Bit);
m_code_region_end = m_code_region_start + GetSpaceSize(KAddressSpaceInfo::Type::Map39Bit);
m_alias_code_region_start = m_code_region_start;
m_alias_code_region_end = m_code_region_end;
process_code_start = Common::AlignDown(GetInteger(code_address), RegionAlignment);
process_code_end = Common::AlignUp(GetInteger(code_address) + code_size, RegionAlignment);
} else {
stack_region_size = 0;
kernel_map_region_size = 0;
m_code_region_start = GetSpaceStart(KAddressSpaceInfo::Type::MapSmall);
m_code_region_end = m_code_region_start + GetSpaceSize(KAddressSpaceInfo::Type::MapSmall);
m_stack_region_start = m_code_region_start;
m_alias_code_region_start = m_code_region_start;
m_alias_code_region_end = GetSpaceStart(KAddressSpaceInfo::Type::MapLarge) +
GetSpaceSize(KAddressSpaceInfo::Type::MapLarge);
m_stack_region_end = m_code_region_end;
m_kernel_map_region_start = m_code_region_start;
m_kernel_map_region_end = m_code_region_end;
process_code_start = m_code_region_start;
process_code_end = m_code_region_end;
}
m_alias_region_extra_size = 0;
if (as_type == Svc::CreateProcessFlag::EnableReservedRegionExtraSize) {
m_alias_region_extra_size = GetAddressSpaceSize() / 8;
alias_region_size += m_alias_region_extra_size;
}
// Set other basic fields.
m_enable_aslr = enable_aslr;
m_enable_device_address_space_merge = enable_das_merge;
m_address_space_start = start;
m_address_space_end = end;
m_is_kernel = false;
m_memory_block_slab_manager = system_resource->GetMemoryBlockSlabManagerPointer();
m_block_info_manager = system_resource->GetBlockInfoManagerPointer();
m_resource_limit = resource_limit;
// Determine the region we can place our undetermineds in.
KProcessAddress alloc_start;
size_t alloc_size;
if ((GetInteger(process_code_start) - GetInteger(m_code_region_start)) >=
(GetInteger(end) - GetInteger(process_code_end))) {
alloc_start = m_code_region_start;
alloc_size = GetInteger(process_code_start) - GetInteger(m_code_region_start);
} else {
alloc_start = process_code_end;
alloc_size = GetInteger(end) - GetInteger(process_code_end);
}
const size_t needed_size =
(alias_region_size + heap_region_size + stack_region_size + kernel_map_region_size);
R_UNLESS(alloc_size >= needed_size, ResultOutOfMemory);
const size_t remaining_size = alloc_size - needed_size;
// Determine random placements for each region.
size_t alias_rnd = 0, heap_rnd = 0, stack_rnd = 0, kmap_rnd = 0;
if (enable_aslr) {
alias_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
RegionAlignment;
heap_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
RegionAlignment;
stack_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
RegionAlignment;
kmap_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
RegionAlignment;
}
// Setup heap and alias regions.
m_alias_region_start = alloc_start + alias_rnd;
m_alias_region_end = m_alias_region_start + alias_region_size;
m_heap_region_start = alloc_start + heap_rnd;
m_heap_region_end = m_heap_region_start + heap_region_size;
if (alias_rnd <= heap_rnd) {
m_heap_region_start += alias_region_size;
m_heap_region_end += alias_region_size;
} else {
m_alias_region_start += heap_region_size;
m_alias_region_end += heap_region_size;
}
// Setup stack region.
if (stack_region_size) {
m_stack_region_start = alloc_start + stack_rnd;
m_stack_region_end = m_stack_region_start + stack_region_size;
if (alias_rnd < stack_rnd) {
m_stack_region_start += alias_region_size;
m_stack_region_end += alias_region_size;
} else {
m_alias_region_start += stack_region_size;
m_alias_region_end += stack_region_size;
}
if (heap_rnd < stack_rnd) {
m_stack_region_start += heap_region_size;
m_stack_region_end += heap_region_size;
} else {
m_heap_region_start += stack_region_size;
m_heap_region_end += stack_region_size;
}
}
// Setup kernel map region.
if (kernel_map_region_size) {
m_kernel_map_region_start = alloc_start + kmap_rnd;
m_kernel_map_region_end = m_kernel_map_region_start + kernel_map_region_size;
if (alias_rnd < kmap_rnd) {
m_kernel_map_region_start += alias_region_size;
m_kernel_map_region_end += alias_region_size;
} else {
m_alias_region_start += kernel_map_region_size;
m_alias_region_end += kernel_map_region_size;
}
if (heap_rnd < kmap_rnd) {
m_kernel_map_region_start += heap_region_size;
m_kernel_map_region_end += heap_region_size;
} else {
m_heap_region_start += kernel_map_region_size;
m_heap_region_end += kernel_map_region_size;
}
if (stack_region_size) {
if (stack_rnd < kmap_rnd) {
m_kernel_map_region_start += stack_region_size;
m_kernel_map_region_end += stack_region_size;
} else {
m_stack_region_start += kernel_map_region_size;
m_stack_region_end += kernel_map_region_size;
}
}
}
// Set heap and fill members.
m_current_heap_end = m_heap_region_start;
m_max_heap_size = 0;
m_mapped_physical_memory_size = 0;
m_mapped_unsafe_physical_memory = 0;
m_mapped_insecure_memory = 0;
m_mapped_ipc_server_memory = 0;
// const bool fill_memory = KTargetSystem::IsDebugMemoryFillEnabled();
const bool fill_memory = false;
m_heap_fill_value = fill_memory ? MemoryFillValue_Heap : MemoryFillValue_Zero;
m_ipc_fill_value = fill_memory ? MemoryFillValue_Ipc : MemoryFillValue_Zero;
m_stack_fill_value = fill_memory ? MemoryFillValue_Stack : MemoryFillValue_Zero;
// Set allocation option.
m_allocate_option =
KMemoryManager::EncodeOption(pool, from_back ? KMemoryManager::Direction::FromBack
: KMemoryManager::Direction::FromFront);
// Ensure that we regions inside our address space.
auto IsInAddressSpace = [&](KProcessAddress addr) {
return m_address_space_start <= addr && addr <= m_address_space_end;
};
ASSERT(IsInAddressSpace(m_alias_region_start));
ASSERT(IsInAddressSpace(m_alias_region_end));
ASSERT(IsInAddressSpace(m_heap_region_start));
ASSERT(IsInAddressSpace(m_heap_region_end));
ASSERT(IsInAddressSpace(m_stack_region_start));
ASSERT(IsInAddressSpace(m_stack_region_end));
ASSERT(IsInAddressSpace(m_kernel_map_region_start));
ASSERT(IsInAddressSpace(m_kernel_map_region_end));
// Ensure that we selected regions that don't overlap.
const KProcessAddress alias_start = m_alias_region_start;
const KProcessAddress alias_last = m_alias_region_end - 1;
const KProcessAddress heap_start = m_heap_region_start;
const KProcessAddress heap_last = m_heap_region_end - 1;
const KProcessAddress stack_start = m_stack_region_start;
const KProcessAddress stack_last = m_stack_region_end - 1;
const KProcessAddress kmap_start = m_kernel_map_region_start;
const KProcessAddress kmap_last = m_kernel_map_region_end - 1;
ASSERT(alias_last < heap_start || heap_last < alias_start);
ASSERT(alias_last < stack_start || stack_last < alias_start);
ASSERT(alias_last < kmap_start || kmap_last < alias_start);
ASSERT(heap_last < stack_start || stack_last < heap_start);
ASSERT(heap_last < kmap_start || kmap_last < heap_start);
// Initialize our implementation.
m_impl = std::make_unique<Common::PageTable>();
m_impl->Resize(m_address_space_width, PageBits);
// Set the tracking memory.
m_memory = std::addressof(memory);
// Initialize our memory block manager.
R_RETURN(m_memory_block_manager.Initialize(m_address_space_start, m_address_space_end,
m_memory_block_slab_manager));
}
Result KPageTableBase::FinalizeProcess() {
// Only process tables should be finalized.
ASSERT(!this->IsKernel());
// NOTE: Here Nintendo calls an unknown OnFinalize function.
// this->OnFinalize();
// NOTE: Here Nintendo calls a second unknown OnFinalize function.
// this->OnFinalize2();
// NOTE: Here Nintendo does a page table walk to discover heap pages to free.
// We will use the block manager finalization below to free them.
R_SUCCEED();
}
void KPageTableBase::Finalize() {
this->FinalizeProcess();
auto BlockCallback = [&](KProcessAddress addr, u64 size) {
if (m_impl->fastmem_arena) {
m_system.DeviceMemory().buffer.Unmap(GetInteger(addr), size, false);
}
// Get physical pages.
KPageGroup pg(m_kernel, m_block_info_manager);
this->MakePageGroup(pg, addr, size / PageSize);
// Free the pages.
pg.CloseAndReset();
};
// Finalize memory blocks.
{
KScopedLightLock lk(m_general_lock);
m_memory_block_manager.Finalize(m_memory_block_slab_manager, std::move(BlockCallback));
}
// Free any unsafe mapped memory.
if (m_mapped_unsafe_physical_memory) {
UNIMPLEMENTED();
}
// Release any insecure mapped memory.
if (m_mapped_insecure_memory) {
if (auto* const insecure_resource_limit =
KSystemControl::GetInsecureMemoryResourceLimit(m_kernel);
insecure_resource_limit != nullptr) {
insecure_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax,
m_mapped_insecure_memory);
}
}
// Release any ipc server memory.
if (m_mapped_ipc_server_memory) {
m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax,
m_mapped_ipc_server_memory);
}
// Close the backing page table, as the destructor is not called for guest objects.
m_impl.reset();
}
KProcessAddress KPageTableBase::GetRegionAddress(Svc::MemoryState state) const {
switch (state) {
case Svc::MemoryState::Free:
case Svc::MemoryState::Kernel:
return m_address_space_start;
case Svc::MemoryState::Normal:
return m_heap_region_start;
case Svc::MemoryState::Ipc:
case Svc::MemoryState::NonSecureIpc:
case Svc::MemoryState::NonDeviceIpc:
return m_alias_region_start;
case Svc::MemoryState::Stack:
return m_stack_region_start;
case Svc::MemoryState::Static:
case Svc::MemoryState::ThreadLocal:
return m_kernel_map_region_start;
case Svc::MemoryState::Io:
case Svc::MemoryState::Shared:
case Svc::MemoryState::AliasCode:
case Svc::MemoryState::AliasCodeData:
case Svc::MemoryState::Transferred:
case Svc::MemoryState::SharedTransferred:
case Svc::MemoryState::SharedCode:
case Svc::MemoryState::GeneratedCode:
case Svc::MemoryState::CodeOut:
case Svc::MemoryState::Coverage:
case Svc::MemoryState::Insecure:
return m_alias_code_region_start;
case Svc::MemoryState::Code:
case Svc::MemoryState::CodeData:
return m_code_region_start;
default:
UNREACHABLE();
}
}
size_t KPageTableBase::GetRegionSize(Svc::MemoryState state) const {
switch (state) {
case Svc::MemoryState::Free:
case Svc::MemoryState::Kernel:
return m_address_space_end - m_address_space_start;
case Svc::MemoryState::Normal:
return m_heap_region_end - m_heap_region_start;
case Svc::MemoryState::Ipc:
case Svc::MemoryState::NonSecureIpc:
case Svc::MemoryState::NonDeviceIpc:
return m_alias_region_end - m_alias_region_start;
case Svc::MemoryState::Stack:
return m_stack_region_end - m_stack_region_start;
case Svc::MemoryState::Static:
case Svc::MemoryState::ThreadLocal:
return m_kernel_map_region_end - m_kernel_map_region_start;
case Svc::MemoryState::Io:
case Svc::MemoryState::Shared:
case Svc::MemoryState::AliasCode:
case Svc::MemoryState::AliasCodeData:
case Svc::MemoryState::Transferred:
case Svc::MemoryState::SharedTransferred:
case Svc::MemoryState::SharedCode:
case Svc::MemoryState::GeneratedCode:
case Svc::MemoryState::CodeOut:
case Svc::MemoryState::Coverage:
case Svc::MemoryState::Insecure:
return m_alias_code_region_end - m_alias_code_region_start;
case Svc::MemoryState::Code:
case Svc::MemoryState::CodeData:
return m_code_region_end - m_code_region_start;
default:
UNREACHABLE();
}
}
bool KPageTableBase::CanContain(KProcessAddress addr, size_t size, Svc::MemoryState state) const {
const KProcessAddress end = addr + size;
const KProcessAddress last = end - 1;
const KProcessAddress region_start = this->GetRegionAddress(state);
const size_t region_size = this->GetRegionSize(state);
const bool is_in_region =
region_start <= addr && addr < end && last <= region_start + region_size - 1;
const bool is_in_heap = !(end <= m_heap_region_start || m_heap_region_end <= addr ||
m_heap_region_start == m_heap_region_end);
const bool is_in_alias = !(end <= m_alias_region_start || m_alias_region_end <= addr ||
m_alias_region_start == m_alias_region_end);
switch (state) {
case Svc::MemoryState::Free:
case Svc::MemoryState::Kernel:
return is_in_region;
case Svc::MemoryState::Io:
case Svc::MemoryState::Static:
case Svc::MemoryState::Code:
case Svc::MemoryState::CodeData:
case Svc::MemoryState::Shared:
case Svc::MemoryState::AliasCode:
case Svc::MemoryState::AliasCodeData:
case Svc::MemoryState::Stack:
case Svc::MemoryState::ThreadLocal:
case Svc::MemoryState::Transferred:
case Svc::MemoryState::SharedTransferred:
case Svc::MemoryState::SharedCode:
case Svc::MemoryState::GeneratedCode:
case Svc::MemoryState::CodeOut:
case Svc::MemoryState::Coverage:
case Svc::MemoryState::Insecure:
return is_in_region && !is_in_heap && !is_in_alias;
case Svc::MemoryState::Normal:
ASSERT(is_in_heap);
return is_in_region && !is_in_alias;
case Svc::MemoryState::Ipc:
case Svc::MemoryState::NonSecureIpc:
case Svc::MemoryState::NonDeviceIpc:
ASSERT(is_in_alias);
return is_in_region && !is_in_heap;
default:
return false;
}
}
Result KPageTableBase::CheckMemoryState(const KMemoryInfo& info, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask,
KMemoryPermission perm, KMemoryAttribute attr_mask,
KMemoryAttribute attr) const {
// Validate the states match expectation.
R_UNLESS((info.m_state & state_mask) == state, ResultInvalidCurrentMemory);
R_UNLESS((info.m_permission & perm_mask) == perm, ResultInvalidCurrentMemory);
R_UNLESS((info.m_attribute & attr_mask) == attr, ResultInvalidCurrentMemory);
R_SUCCEED();
}
Result KPageTableBase::CheckMemoryStateContiguous(size_t* out_blocks_needed, KProcessAddress addr,
size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask,
KMemoryPermission perm,
KMemoryAttribute attr_mask,
KMemoryAttribute attr) const {
ASSERT(this->IsLockedByCurrentThread());
// Get information about the first block.
const KProcessAddress last_addr = addr + size - 1;
KMemoryBlockManager::const_iterator it = m_memory_block_manager.FindIterator(addr);
KMemoryInfo info = it->GetMemoryInfo();
// If the start address isn't aligned, we need a block.
const size_t blocks_for_start_align =
(Common::AlignDown(GetInteger(addr), PageSize) != info.GetAddress()) ? 1 : 0;
while (true) {
// Validate against the provided masks.
R_TRY(this->CheckMemoryState(info, state_mask, state, perm_mask, perm, attr_mask, attr));
// Break once we're done.
if (last_addr <= info.GetLastAddress()) {
break;
}
// Advance our iterator.
it++;
ASSERT(it != m_memory_block_manager.cend());
info = it->GetMemoryInfo();
}
// If the end address isn't aligned, we need a block.
const size_t blocks_for_end_align =
(Common::AlignUp(GetInteger(addr) + size, PageSize) != info.GetEndAddress()) ? 1 : 0;
if (out_blocks_needed != nullptr) {
*out_blocks_needed = blocks_for_start_align + blocks_for_end_align;
}
R_SUCCEED();
}
Result KPageTableBase::CheckMemoryState(KMemoryState* out_state, KMemoryPermission* out_perm,
KMemoryAttribute* out_attr, size_t* out_blocks_needed,
KMemoryBlockManager::const_iterator it,
KProcessAddress last_addr, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask,
KMemoryPermission perm, KMemoryAttribute attr_mask,
KMemoryAttribute attr, KMemoryAttribute ignore_attr) const {
ASSERT(this->IsLockedByCurrentThread());
// Get information about the first block.
KMemoryInfo info = it->GetMemoryInfo();
// Validate all blocks in the range have correct state.
const KMemoryState first_state = info.m_state;
const KMemoryPermission first_perm = info.m_permission;
const KMemoryAttribute first_attr = info.m_attribute;
while (true) {
// Validate the current block.
R_UNLESS(info.m_state == first_state, ResultInvalidCurrentMemory);
R_UNLESS(info.m_permission == first_perm, ResultInvalidCurrentMemory);
R_UNLESS((info.m_attribute | ignore_attr) == (first_attr | ignore_attr),
ResultInvalidCurrentMemory);
// Validate against the provided masks.
R_TRY(this->CheckMemoryState(info, state_mask, state, perm_mask, perm, attr_mask, attr));
// Break once we're done.
if (last_addr <= info.GetLastAddress()) {
break;
}
// Advance our iterator.
it++;
ASSERT(it != m_memory_block_manager.cend());
info = it->GetMemoryInfo();
}
// Write output state.
if (out_state != nullptr) {
*out_state = first_state;
}
if (out_perm != nullptr) {
*out_perm = first_perm;
}
if (out_attr != nullptr) {
*out_attr = first_attr & ~ignore_attr;
}
// If the end address isn't aligned, we need a block.
if (out_blocks_needed != nullptr) {
const size_t blocks_for_end_align =
(Common::AlignDown(GetInteger(last_addr), PageSize) + PageSize != info.GetEndAddress())
? 1
: 0;
*out_blocks_needed = blocks_for_end_align;
}
R_SUCCEED();
}
Result KPageTableBase::CheckMemoryState(KMemoryState* out_state, KMemoryPermission* out_perm,
KMemoryAttribute* out_attr, size_t* out_blocks_needed,
KProcessAddress addr, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask,
KMemoryPermission perm, KMemoryAttribute attr_mask,
KMemoryAttribute attr, KMemoryAttribute ignore_attr) const {
ASSERT(this->IsLockedByCurrentThread());
// Check memory state.
const KProcessAddress last_addr = addr + size - 1;
KMemoryBlockManager::const_iterator it = m_memory_block_manager.FindIterator(addr);
R_TRY(this->CheckMemoryState(out_state, out_perm, out_attr, out_blocks_needed, it, last_addr,
state_mask, state, perm_mask, perm, attr_mask, attr, ignore_attr));
// If the start address isn't aligned, we need a block.
if (out_blocks_needed != nullptr &&
Common::AlignDown(GetInteger(addr), PageSize) != it->GetAddress()) {
++(*out_blocks_needed);
}
R_SUCCEED();
}
Result KPageTableBase::LockMemoryAndOpen(KPageGroup* out_pg, KPhysicalAddress* out_paddr,
KProcessAddress addr, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask,
KMemoryPermission perm, KMemoryAttribute attr_mask,
KMemoryAttribute attr, KMemoryPermission new_perm,
KMemoryAttribute lock_attr) {
// Validate basic preconditions.
ASSERT(False(lock_attr & attr));
ASSERT(False(lock_attr & (KMemoryAttribute::IpcLocked | KMemoryAttribute::DeviceShared)));
// Validate the lock request.
const size_t num_pages = size / PageSize;
R_UNLESS(this->Contains(addr, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check that the output page group is empty, if it exists.
if (out_pg) {
ASSERT(out_pg->GetNumPages() == 0);
}
// Check the state.
KMemoryState old_state;
KMemoryPermission old_perm;
KMemoryAttribute old_attr;
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm),
std::addressof(old_attr), std::addressof(num_allocator_blocks),
addr, size, state_mask | KMemoryState::FlagReferenceCounted,
state | KMemoryState::FlagReferenceCounted, perm_mask, perm,
attr_mask, attr));
// Get the physical address, if we're supposed to.
if (out_paddr != nullptr) {
ASSERT(this->GetPhysicalAddressLocked(out_paddr, addr));
}
// Make the page group, if we're supposed to.
if (out_pg != nullptr) {
R_TRY(this->MakePageGroup(*out_pg, addr, num_pages));
}
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Decide on new perm and attr.
new_perm = (new_perm != KMemoryPermission::None) ? new_perm : old_perm;
KMemoryAttribute new_attr = old_attr | static_cast<KMemoryAttribute>(lock_attr);
// Update permission, if we need to.
if (new_perm != old_perm) {
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
const KPageProperties properties = {new_perm, false,
True(old_attr & KMemoryAttribute::Uncached),
DisableMergeAttribute::DisableHeadBodyTail};
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, 0, false, properties,
OperationType::ChangePermissions, false));
}
// Apply the memory block updates.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, old_state, new_perm,
new_attr, KMemoryBlockDisableMergeAttribute::Locked,
KMemoryBlockDisableMergeAttribute::None);
// If we have an output group, open.
if (out_pg) {
out_pg->Open();
}
R_SUCCEED();
}
Result KPageTableBase::UnlockMemory(KProcessAddress addr, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask,
KMemoryPermission perm, KMemoryAttribute attr_mask,
KMemoryAttribute attr, KMemoryPermission new_perm,
KMemoryAttribute lock_attr, const KPageGroup* pg) {
// Validate basic preconditions.
ASSERT((attr_mask & lock_attr) == lock_attr);
ASSERT((attr & lock_attr) == lock_attr);
// Validate the unlock request.
const size_t num_pages = size / PageSize;
R_UNLESS(this->Contains(addr, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the state.
KMemoryState old_state;
KMemoryPermission old_perm;
KMemoryAttribute old_attr;
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm),
std::addressof(old_attr), std::addressof(num_allocator_blocks),
addr, size, state_mask | KMemoryState::FlagReferenceCounted,
state | KMemoryState::FlagReferenceCounted, perm_mask, perm,
attr_mask, attr));
// Check the page group.
if (pg != nullptr) {
R_UNLESS(this->IsValidPageGroup(*pg, addr, num_pages), ResultInvalidMemoryRegion);
}
// Decide on new perm and attr.
new_perm = (new_perm != KMemoryPermission::None) ? new_perm : old_perm;
KMemoryAttribute new_attr = old_attr & ~static_cast<KMemoryAttribute>(lock_attr);
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Update permission, if we need to.
if (new_perm != old_perm) {
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
const KPageProperties properties = {new_perm, false,
True(old_attr & KMemoryAttribute::Uncached),
DisableMergeAttribute::EnableAndMergeHeadBodyTail};
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, 0, false, properties,
OperationType::ChangePermissions, false));
}
// Apply the memory block updates.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, old_state, new_perm,
new_attr, KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::Locked);
R_SUCCEED();
}
Result KPageTableBase::QueryInfoImpl(KMemoryInfo* out_info, Svc::PageInfo* out_page,
KProcessAddress address) const {
ASSERT(this->IsLockedByCurrentThread());
ASSERT(out_info != nullptr);
ASSERT(out_page != nullptr);
const KMemoryBlock* block = m_memory_block_manager.FindBlock(address);
R_UNLESS(block != nullptr, ResultInvalidCurrentMemory);
*out_info = block->GetMemoryInfo();
out_page->flags = 0;
R_SUCCEED();
}
Result KPageTableBase::QueryMappingImpl(KProcessAddress* out, KPhysicalAddress address, size_t size,
Svc::MemoryState state) const {
ASSERT(!this->IsLockedByCurrentThread());
ASSERT(out != nullptr);
const KProcessAddress region_start = this->GetRegionAddress(state);
const size_t region_size = this->GetRegionSize(state);
// Check that the address/size are potentially valid.
R_UNLESS((address < address + size), ResultNotFound);
// Lock the table.
KScopedLightLock lk(m_general_lock);
auto& impl = this->GetImpl();
// Begin traversal.
TraversalContext context;
TraversalEntry cur_entry = {.phys_addr = 0, .block_size = 0};
bool cur_valid = false;
TraversalEntry next_entry;
bool next_valid;
size_t tot_size = 0;
next_valid =
impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), region_start);
next_entry.block_size =
(next_entry.block_size - (GetInteger(region_start) & (next_entry.block_size - 1)));
// Iterate, looking for entry.
while (true) {
if ((!next_valid && !cur_valid) ||
(next_valid && cur_valid &&
next_entry.phys_addr == cur_entry.phys_addr + cur_entry.block_size)) {
cur_entry.block_size += next_entry.block_size;
} else {
if (cur_valid && cur_entry.phys_addr <= address &&
address + size <= cur_entry.phys_addr + cur_entry.block_size) {
// Check if this region is valid.
const KProcessAddress mapped_address =
(region_start + tot_size) + GetInteger(address - cur_entry.phys_addr);
if (R_SUCCEEDED(this->CheckMemoryState(
mapped_address, size, KMemoryState::Mask, static_cast<KMemoryState>(state),
KMemoryPermission::UserRead, KMemoryPermission::UserRead,
KMemoryAttribute::None, KMemoryAttribute::None))) {
// It is!
*out = mapped_address;
R_SUCCEED();
}
}
// Update tracking variables.
tot_size += cur_entry.block_size;
cur_entry = next_entry;
cur_valid = next_valid;
}
if (cur_entry.block_size + tot_size >= region_size) {
break;
}
next_valid = impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
}
// Check the last entry.
R_UNLESS(cur_valid, ResultNotFound);
R_UNLESS(cur_entry.phys_addr <= address, ResultNotFound);
R_UNLESS(address + size <= cur_entry.phys_addr + cur_entry.block_size, ResultNotFound);
// Check if the last region is valid.
const KProcessAddress mapped_address =
(region_start + tot_size) + GetInteger(address - cur_entry.phys_addr);
R_TRY_CATCH(this->CheckMemoryState(mapped_address, size, KMemoryState::All,
static_cast<KMemoryState>(state),
KMemoryPermission::UserRead, KMemoryPermission::UserRead,
KMemoryAttribute::None, KMemoryAttribute::None)) {
R_CONVERT_ALL(ResultNotFound);
}
R_END_TRY_CATCH;
// We found the region.
*out = mapped_address;
R_SUCCEED();
}
Result KPageTableBase::MapMemory(KProcessAddress dst_address, KProcessAddress src_address,
size_t size) {
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Validate that the source address's state is valid.
KMemoryState src_state;
size_t num_src_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(src_state), nullptr, nullptr,
std::addressof(num_src_allocator_blocks), src_address, size,
KMemoryState::FlagCanAlias, KMemoryState::FlagCanAlias,
KMemoryPermission::All, KMemoryPermission::UserReadWrite,
KMemoryAttribute::All, KMemoryAttribute::None));
// Validate that the dst address's state is valid.
size_t num_dst_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_dst_allocator_blocks), dst_address, size,
KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryAttribute::None));
// Create an update allocator for the source.
Result src_allocator_result;
KMemoryBlockManagerUpdateAllocator src_allocator(std::addressof(src_allocator_result),
m_memory_block_slab_manager,
num_src_allocator_blocks);
R_TRY(src_allocator_result);
// Create an update allocator for the destination.
Result dst_allocator_result;
KMemoryBlockManagerUpdateAllocator dst_allocator(std::addressof(dst_allocator_result),
m_memory_block_slab_manager,
num_dst_allocator_blocks);
R_TRY(dst_allocator_result);
// Map the memory.
{
// Determine the number of pages being operated on.
const size_t num_pages = size / PageSize;
// Create page groups for the memory being unmapped.
KPageGroup pg(m_kernel, m_block_info_manager);
// Create the page group representing the source.
R_TRY(this->MakePageGroup(pg, src_address, num_pages));
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Reprotect the source as kernel-read/not mapped.
const KMemoryPermission new_src_perm = static_cast<KMemoryPermission>(
KMemoryPermission::KernelRead | KMemoryPermission::NotMapped);
const KMemoryAttribute new_src_attr = KMemoryAttribute::Locked;
const KPageProperties src_properties = {new_src_perm, false, false,
DisableMergeAttribute::DisableHeadBodyTail};
R_TRY(this->Operate(updater.GetPageList(), src_address, num_pages, 0, false, src_properties,
OperationType::ChangePermissions, false));
// Ensure that we unprotect the source pages on failure.
ON_RESULT_FAILURE {
const KPageProperties unprotect_properties = {
KMemoryPermission::UserReadWrite, false, false,
DisableMergeAttribute::EnableHeadBodyTail};
R_ASSERT(this->Operate(updater.GetPageList(), src_address, num_pages, 0, false,
unprotect_properties, OperationType::ChangePermissions, true));
};
// Map the alias pages.
const KPageProperties dst_map_properties = {KMemoryPermission::UserReadWrite, false, false,
DisableMergeAttribute::DisableHead};
R_TRY(this->MapPageGroupImpl(updater.GetPageList(), dst_address, pg, dst_map_properties,
false));
// Apply the memory block updates.
m_memory_block_manager.Update(std::addressof(src_allocator), src_address, num_pages,
src_state, new_src_perm, new_src_attr,
KMemoryBlockDisableMergeAttribute::Locked,
KMemoryBlockDisableMergeAttribute::None);
m_memory_block_manager.Update(
std::addressof(dst_allocator), dst_address, num_pages, KMemoryState::Stack,
KMemoryPermission::UserReadWrite, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal, KMemoryBlockDisableMergeAttribute::None);
}
R_SUCCEED();
}
Result KPageTableBase::UnmapMemory(KProcessAddress dst_address, KProcessAddress src_address,
size_t size) {
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Validate that the source address's state is valid.
KMemoryState src_state;
size_t num_src_allocator_blocks;
R_TRY(this->CheckMemoryState(
std::addressof(src_state), nullptr, nullptr, std::addressof(num_src_allocator_blocks),
src_address, size, KMemoryState::FlagCanAlias, KMemoryState::FlagCanAlias,
KMemoryPermission::All, KMemoryPermission::NotMapped | KMemoryPermission::KernelRead,
KMemoryAttribute::All, KMemoryAttribute::Locked));
// Validate that the dst address's state is valid.
KMemoryPermission dst_perm;
size_t num_dst_allocator_blocks;
R_TRY(this->CheckMemoryState(
nullptr, std::addressof(dst_perm), nullptr, std::addressof(num_dst_allocator_blocks),
dst_address, size, KMemoryState::All, KMemoryState::Stack, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::All, KMemoryAttribute::None));
// Create an update allocator for the source.
Result src_allocator_result;
KMemoryBlockManagerUpdateAllocator src_allocator(std::addressof(src_allocator_result),
m_memory_block_slab_manager,
num_src_allocator_blocks);
R_TRY(src_allocator_result);
// Create an update allocator for the destination.
Result dst_allocator_result;
KMemoryBlockManagerUpdateAllocator dst_allocator(std::addressof(dst_allocator_result),
m_memory_block_slab_manager,
num_dst_allocator_blocks);
R_TRY(dst_allocator_result);
// Unmap the memory.
{
// Determine the number of pages being operated on.
const size_t num_pages = size / PageSize;
// Create page groups for the memory being unmapped.
KPageGroup pg(m_kernel, m_block_info_manager);
// Create the page group representing the destination.
R_TRY(this->MakePageGroup(pg, dst_address, num_pages));
// Ensure the page group is the valid for the source.
R_UNLESS(this->IsValidPageGroup(pg, src_address, num_pages), ResultInvalidMemoryRegion);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Unmap the aliased copy of the pages.
const KPageProperties dst_unmap_properties = {KMemoryPermission::None, false, false,
DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), dst_address, num_pages, 0, false,
dst_unmap_properties, OperationType::Unmap, false));
// Ensure that we re-map the aliased pages on failure.
ON_RESULT_FAILURE {
this->RemapPageGroup(updater.GetPageList(), dst_address, size, pg);
};
// Try to set the permissions for the source pages back to what they should be.
const KPageProperties src_properties = {KMemoryPermission::UserReadWrite, false, false,
DisableMergeAttribute::EnableAndMergeHeadBodyTail};
R_TRY(this->Operate(updater.GetPageList(), src_address, num_pages, 0, false, src_properties,
OperationType::ChangePermissions, false));
// Apply the memory block updates.
m_memory_block_manager.Update(
std::addressof(src_allocator), src_address, num_pages, src_state,
KMemoryPermission::UserReadWrite, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::None, KMemoryBlockDisableMergeAttribute::Locked);
m_memory_block_manager.Update(
std::addressof(dst_allocator), dst_address, num_pages, KMemoryState::None,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::None, KMemoryBlockDisableMergeAttribute::Normal);
}
R_SUCCEED();
}
Result KPageTableBase::MapCodeMemory(KProcessAddress dst_address, KProcessAddress src_address,
size_t size) {
// Validate the mapping request.
R_UNLESS(this->CanContain(dst_address, size, KMemoryState::AliasCode),
ResultInvalidMemoryRegion);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Verify that the source memory is normal heap.
KMemoryState src_state;
KMemoryPermission src_perm;
size_t num_src_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(src_state), std::addressof(src_perm), nullptr,
std::addressof(num_src_allocator_blocks), src_address, size,
KMemoryState::All, KMemoryState::Normal, KMemoryPermission::All,
KMemoryPermission::UserReadWrite, KMemoryAttribute::All,
KMemoryAttribute::None));
// Verify that the destination memory is unmapped.
size_t num_dst_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_dst_allocator_blocks), dst_address, size,
KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryAttribute::None));
// Create an update allocator for the source.
Result src_allocator_result;
KMemoryBlockManagerUpdateAllocator src_allocator(std::addressof(src_allocator_result),
m_memory_block_slab_manager,
num_src_allocator_blocks);
R_TRY(src_allocator_result);
// Create an update allocator for the destination.
Result dst_allocator_result;
KMemoryBlockManagerUpdateAllocator dst_allocator(std::addressof(dst_allocator_result),
m_memory_block_slab_manager,
num_dst_allocator_blocks);
R_TRY(dst_allocator_result);
// Map the code memory.
{
// Determine the number of pages being operated on.
const size_t num_pages = size / PageSize;
// Create page groups for the memory being unmapped.
KPageGroup pg(m_kernel, m_block_info_manager);
// Create the page group representing the source.
R_TRY(this->MakePageGroup(pg, src_address, num_pages));
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Reprotect the source as kernel-read/not mapped.
const KMemoryPermission new_perm = static_cast<KMemoryPermission>(
KMemoryPermission::KernelRead | KMemoryPermission::NotMapped);
const KPageProperties src_properties = {new_perm, false, false,
DisableMergeAttribute::DisableHeadBodyTail};
R_TRY(this->Operate(updater.GetPageList(), src_address, num_pages, 0, false, src_properties,
OperationType::ChangePermissions, false));
// Ensure that we unprotect the source pages on failure.
ON_RESULT_FAILURE {
const KPageProperties unprotect_properties = {
src_perm, false, false, DisableMergeAttribute::EnableHeadBodyTail};
R_ASSERT(this->Operate(updater.GetPageList(), src_address, num_pages, 0, false,
unprotect_properties, OperationType::ChangePermissions, true));
};
// Map the alias pages.
const KPageProperties dst_properties = {new_perm, false, false,
DisableMergeAttribute::DisableHead};
R_TRY(
this->MapPageGroupImpl(updater.GetPageList(), dst_address, pg, dst_properties, false));
// Apply the memory block updates.
m_memory_block_manager.Update(std::addressof(src_allocator), src_address, num_pages,
src_state, new_perm, KMemoryAttribute::Locked,
KMemoryBlockDisableMergeAttribute::Locked,
KMemoryBlockDisableMergeAttribute::None);
m_memory_block_manager.Update(std::addressof(dst_allocator), dst_address, num_pages,
KMemoryState::AliasCode, new_perm, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
}
R_SUCCEED();
}
Result KPageTableBase::UnmapCodeMemory(KProcessAddress dst_address, KProcessAddress src_address,
size_t size) {
// Validate the mapping request.
R_UNLESS(this->CanContain(dst_address, size, KMemoryState::AliasCode),
ResultInvalidMemoryRegion);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Verify that the source memory is locked normal heap.
size_t num_src_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_src_allocator_blocks), src_address, size,
KMemoryState::All, KMemoryState::Normal, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::All,
KMemoryAttribute::Locked));
// Verify that the destination memory is aliasable code.
size_t num_dst_allocator_blocks;
R_TRY(this->CheckMemoryStateContiguous(
std::addressof(num_dst_allocator_blocks), dst_address, size, KMemoryState::FlagCanCodeAlias,
KMemoryState::FlagCanCodeAlias, KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::All & ~KMemoryAttribute::PermissionLocked, KMemoryAttribute::None));
// Determine whether any pages being unmapped are code.
bool any_code_pages = false;
{
KMemoryBlockManager::const_iterator it = m_memory_block_manager.FindIterator(dst_address);
while (true) {
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
// Check if the memory has code flag.
if (True(info.GetState() & KMemoryState::FlagCode)) {
any_code_pages = true;
break;
}
// Check if we're done.
if (dst_address + size - 1 <= info.GetLastAddress()) {
break;
}
// Advance.
++it;
}
}
// Ensure that we maintain the instruction cache.
bool reprotected_pages = false;
SCOPE_EXIT {
if (reprotected_pages && any_code_pages) {
InvalidateInstructionCache(m_kernel, this, dst_address, size);
}
};
// Unmap.
{
// Determine the number of pages being operated on.
const size_t num_pages = size / PageSize;
// Create page groups for the memory being unmapped.
KPageGroup pg(m_kernel, m_block_info_manager);
// Create the page group representing the destination.
R_TRY(this->MakePageGroup(pg, dst_address, num_pages));
// Verify that the page group contains the same pages as the source.
R_UNLESS(this->IsValidPageGroup(pg, src_address, num_pages), ResultInvalidMemoryRegion);
// Create an update allocator for the source.
Result src_allocator_result;
KMemoryBlockManagerUpdateAllocator src_allocator(std::addressof(src_allocator_result),
m_memory_block_slab_manager,
num_src_allocator_blocks);
R_TRY(src_allocator_result);
// Create an update allocator for the destination.
Result dst_allocator_result;
KMemoryBlockManagerUpdateAllocator dst_allocator(std::addressof(dst_allocator_result),
m_memory_block_slab_manager,
num_dst_allocator_blocks);
R_TRY(dst_allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Unmap the aliased copy of the pages.
const KPageProperties dst_unmap_properties = {KMemoryPermission::None, false, false,
DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), dst_address, num_pages, 0, false,
dst_unmap_properties, OperationType::Unmap, false));
// Ensure that we re-map the aliased pages on failure.
ON_RESULT_FAILURE {
this->RemapPageGroup(updater.GetPageList(), dst_address, size, pg);
};
// Try to set the permissions for the source pages back to what they should be.
const KPageProperties src_properties = {KMemoryPermission::UserReadWrite, false, false,
DisableMergeAttribute::EnableAndMergeHeadBodyTail};
R_TRY(this->Operate(updater.GetPageList(), src_address, num_pages, 0, false, src_properties,
OperationType::ChangePermissions, false));
// Apply the memory block updates.
m_memory_block_manager.Update(
std::addressof(dst_allocator), dst_address, num_pages, KMemoryState::None,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::None, KMemoryBlockDisableMergeAttribute::Normal);
m_memory_block_manager.Update(
std::addressof(src_allocator), src_address, num_pages, KMemoryState::Normal,
KMemoryPermission::UserReadWrite, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::None, KMemoryBlockDisableMergeAttribute::Locked);
// Note that we reprotected pages.
reprotected_pages = true;
}
R_SUCCEED();
}
Result KPageTableBase::MapInsecureMemory(KProcessAddress address, size_t size) {
// Get the insecure memory resource limit and pool.
auto* const insecure_resource_limit = KSystemControl::GetInsecureMemoryResourceLimit(m_kernel);
const auto insecure_pool =
static_cast<KMemoryManager::Pool>(KSystemControl::GetInsecureMemoryPool());
// Reserve the insecure memory.
// NOTE: ResultOutOfMemory is returned here instead of the usual LimitReached.
KScopedResourceReservation memory_reservation(insecure_resource_limit,
Svc::LimitableResource::PhysicalMemoryMax, size);
R_UNLESS(memory_reservation.Succeeded(), ResultOutOfMemory);
// Allocate pages for the insecure memory.
KPageGroup pg(m_kernel, m_block_info_manager);
R_TRY(m_kernel.MemoryManager().AllocateAndOpen(
std::addressof(pg), size / PageSize,
KMemoryManager::EncodeOption(insecure_pool, KMemoryManager::Direction::FromFront)));
// Close the opened pages when we're done with them.
// If the mapping succeeds, each page will gain an extra reference, otherwise they will be freed
// automatically.
SCOPE_EXIT {
pg.Close();
};
// Clear all the newly allocated pages.
for (const auto& it : pg) {
ClearBackingRegion(m_system, it.GetAddress(), it.GetSize(), m_heap_fill_value);
}
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Validate that the address's state is valid.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Map the pages.
const size_t num_pages = size / PageSize;
const KPageProperties map_properties = {KMemoryPermission::UserReadWrite, false, false,
DisableMergeAttribute::DisableHead};
R_TRY(this->Operate(updater.GetPageList(), address, num_pages, pg, map_properties,
OperationType::MapGroup, false));
// Apply the memory block update.
m_memory_block_manager.Update(std::addressof(allocator), address, num_pages,
KMemoryState::Insecure, KMemoryPermission::UserReadWrite,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
// Update our mapped insecure size.
m_mapped_insecure_memory += size;
// Commit the memory reservation.
memory_reservation.Commit();
// We succeeded.
R_SUCCEED();
}
Result KPageTableBase::UnmapInsecureMemory(KProcessAddress address, size_t size) {
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the memory state.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
KMemoryState::All, KMemoryState::Insecure, KMemoryPermission::All,
KMemoryPermission::UserReadWrite, KMemoryAttribute::All,
KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Unmap the memory.
const size_t num_pages = size / PageSize;
const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), address, num_pages, 0, false, unmap_properties,
OperationType::Unmap, false));
// Apply the memory block update.
m_memory_block_manager.Update(std::addressof(allocator), address, num_pages, KMemoryState::Free,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal);
// Update our mapped insecure size.
m_mapped_insecure_memory -= size;
// Release the insecure memory from the insecure limit.
if (auto* const insecure_resource_limit =
KSystemControl::GetInsecureMemoryResourceLimit(m_kernel);
insecure_resource_limit != nullptr) {
insecure_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax, size);
}
R_SUCCEED();
}
KProcessAddress KPageTableBase::FindFreeArea(KProcessAddress region_start, size_t region_num_pages,
size_t num_pages, size_t alignment, size_t offset,
size_t guard_pages) const {
KProcessAddress address = 0;
if (num_pages <= region_num_pages) {
if (this->IsAslrEnabled()) {
// Try to directly find a free area up to 8 times.
for (size_t i = 0; i < 8; i++) {
const size_t random_offset =
KSystemControl::GenerateRandomRange(
0, (region_num_pages - num_pages - guard_pages) * PageSize / alignment) *
alignment;
const KProcessAddress candidate =
Common::AlignDown(GetInteger(region_start + random_offset), alignment) + offset;
KMemoryInfo info;
Svc::PageInfo page_info;
R_ASSERT(this->QueryInfoImpl(std::addressof(info), std::addressof(page_info),
candidate));
if (info.m_state != KMemoryState::Free) {
continue;
}
if (!(region_start <= candidate)) {
continue;
}
if (!(info.GetAddress() + guard_pages * PageSize <= GetInteger(candidate))) {
continue;
}
if (!(candidate + (num_pages + guard_pages) * PageSize - 1 <=
info.GetLastAddress())) {
continue;
}
if (!(candidate + (num_pages + guard_pages) * PageSize - 1 <=
region_start + region_num_pages * PageSize - 1)) {
continue;
}
address = candidate;
break;
}
// Fall back to finding the first free area with a random offset.
if (address == 0) {
// NOTE: Nintendo does not account for guard pages here.
// This may theoretically cause an offset to be chosen that cannot be mapped.
// We will account for guard pages.
const size_t offset_pages = KSystemControl::GenerateRandomRange(
0, region_num_pages - num_pages - guard_pages);
address = m_memory_block_manager.FindFreeArea(
region_start + offset_pages * PageSize, region_num_pages - offset_pages,
num_pages, alignment, offset, guard_pages);
}
}
// Find the first free area.
if (address == 0) {
address = m_memory_block_manager.FindFreeArea(region_start, region_num_pages, num_pages,
alignment, offset, guard_pages);
}
}
return address;
}
size_t KPageTableBase::GetSize(KMemoryState state) const {
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Iterate, counting blocks with the desired state.
size_t total_size = 0;
for (KMemoryBlockManager::const_iterator it =
m_memory_block_manager.FindIterator(m_address_space_start);
it != m_memory_block_manager.end(); ++it) {
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
if (info.GetState() == state) {
total_size += info.GetSize();
}
}
return total_size;
}
size_t KPageTableBase::GetCodeSize() const {
return this->GetSize(KMemoryState::Code);
}
size_t KPageTableBase::GetCodeDataSize() const {
return this->GetSize(KMemoryState::CodeData);
}
size_t KPageTableBase::GetAliasCodeSize() const {
return this->GetSize(KMemoryState::AliasCode);
}
size_t KPageTableBase::GetAliasCodeDataSize() const {
return this->GetSize(KMemoryState::AliasCodeData);
}
Result KPageTableBase::AllocateAndMapPagesImpl(PageLinkedList* page_list, KProcessAddress address,
size_t num_pages, KMemoryPermission perm) {
ASSERT(this->IsLockedByCurrentThread());
// Create a page group to hold the pages we allocate.
KPageGroup pg(m_kernel, m_block_info_manager);
// Allocate the pages.
R_TRY(
m_kernel.MemoryManager().AllocateAndOpen(std::addressof(pg), num_pages, m_allocate_option));
// Ensure that the page group is closed when we're done working with it.
SCOPE_EXIT {
pg.Close();
};
// Clear all pages.
for (const auto& it : pg) {
ClearBackingRegion(m_system, it.GetAddress(), it.GetSize(), m_heap_fill_value);
}
// Map the pages.
const KPageProperties properties = {perm, false, false, DisableMergeAttribute::None};
R_RETURN(this->Operate(page_list, address, num_pages, pg, properties, OperationType::MapGroup,
false));
}
Result KPageTableBase::MapPageGroupImpl(PageLinkedList* page_list, KProcessAddress address,
const KPageGroup& pg, const KPageProperties properties,
bool reuse_ll) {
ASSERT(this->IsLockedByCurrentThread());
// Note the current address, so that we can iterate.
const KProcessAddress start_address = address;
KProcessAddress cur_address = address;
// Ensure that we clean up on failure.
ON_RESULT_FAILURE {
ASSERT(!reuse_ll);
if (cur_address != start_address) {
const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
DisableMergeAttribute::None};
R_ASSERT(this->Operate(page_list, start_address,
(cur_address - start_address) / PageSize, 0, false,
unmap_properties, OperationType::Unmap, true));
}
};
// Iterate, mapping all pages in the group.
for (const auto& block : pg) {
// Map and advance.
const KPageProperties cur_properties =
(cur_address == start_address)
? properties
: KPageProperties{properties.perm, properties.io, properties.uncached,
DisableMergeAttribute::None};
R_TRY(this->Operate(page_list, cur_address, block.GetNumPages(), block.GetAddress(), true,
cur_properties, OperationType::Map, reuse_ll));
cur_address += block.GetSize();
}
// We succeeded!
R_SUCCEED();
}
void KPageTableBase::RemapPageGroup(PageLinkedList* page_list, KProcessAddress address, size_t size,
const KPageGroup& pg) {
ASSERT(this->IsLockedByCurrentThread());
// Note the current address, so that we can iterate.
const KProcessAddress start_address = address;
const KProcessAddress last_address = start_address + size - 1;
const KProcessAddress end_address = last_address + 1;
// Iterate over the memory.
auto pg_it = pg.begin();
ASSERT(pg_it != pg.end());
KPhysicalAddress pg_phys_addr = pg_it->GetAddress();
size_t pg_pages = pg_it->GetNumPages();
auto it = m_memory_block_manager.FindIterator(start_address);
while (true) {
// Check that the iterator is valid.
ASSERT(it != m_memory_block_manager.end());
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
// Determine the range to map.
KProcessAddress map_address = std::max<u64>(info.GetAddress(), GetInteger(start_address));
const KProcessAddress map_end_address =
std::min<u64>(info.GetEndAddress(), GetInteger(end_address));
ASSERT(map_end_address != map_address);
// Determine if we should disable head merge.
const bool disable_head_merge =
info.GetAddress() >= GetInteger(start_address) &&
True(info.GetDisableMergeAttribute() & KMemoryBlockDisableMergeAttribute::Normal);
const KPageProperties map_properties = {
info.GetPermission(), false, false,
disable_head_merge ? DisableMergeAttribute::DisableHead : DisableMergeAttribute::None};
// While we have pages to map, map them.
size_t map_pages = (map_end_address - map_address) / PageSize;
while (map_pages > 0) {
// Check if we're at the end of the physical block.
if (pg_pages == 0) {
// Ensure there are more pages to map.
ASSERT(pg_it != pg.end());
// Advance our physical block.
++pg_it;
pg_phys_addr = pg_it->GetAddress();
pg_pages = pg_it->GetNumPages();
}
// Map whatever we can.
const size_t cur_pages = std::min(pg_pages, map_pages);
R_ASSERT(this->Operate(page_list, map_address, map_pages, pg_phys_addr, true,
map_properties, OperationType::Map, true));
// Advance.
map_address += cur_pages * PageSize;
map_pages -= cur_pages;
pg_phys_addr += cur_pages * PageSize;
pg_pages -= cur_pages;
}
// Check if we're done.
if (last_address <= info.GetLastAddress()) {
break;
}
// Advance.
++it;
}
// Check that we re-mapped precisely the page group.
ASSERT((++pg_it) == pg.end());
}
Result KPageTableBase::MakePageGroup(KPageGroup& pg, KProcessAddress addr, size_t num_pages) {
ASSERT(this->IsLockedByCurrentThread());
const size_t size = num_pages * PageSize;
// We're making a new group, not adding to an existing one.
R_UNLESS(pg.empty(), ResultInvalidCurrentMemory);
auto& impl = this->GetImpl();
// Begin traversal.
TraversalContext context;
TraversalEntry next_entry;
R_UNLESS(impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), addr),
ResultInvalidCurrentMemory);
// Prepare tracking variables.
KPhysicalAddress cur_addr = next_entry.phys_addr;
size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
size_t tot_size = cur_size;
// Iterate, adding to group as we go.
while (tot_size < size) {
R_UNLESS(impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context)),
ResultInvalidCurrentMemory);
if (next_entry.phys_addr != (cur_addr + cur_size)) {
const size_t cur_pages = cur_size / PageSize;
R_UNLESS(IsHeapPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
R_TRY(pg.AddBlock(cur_addr, cur_pages));
cur_addr = next_entry.phys_addr;
cur_size = next_entry.block_size;
} else {
cur_size += next_entry.block_size;
}
tot_size += next_entry.block_size;
}
// Ensure we add the right amount for the last block.
if (tot_size > size) {
cur_size -= (tot_size - size);
}
// add the last block.
const size_t cur_pages = cur_size / PageSize;
R_UNLESS(IsHeapPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
R_TRY(pg.AddBlock(cur_addr, cur_pages));
R_SUCCEED();
}
bool KPageTableBase::IsValidPageGroup(const KPageGroup& pg, KProcessAddress addr,
size_t num_pages) {
ASSERT(this->IsLockedByCurrentThread());
const size_t size = num_pages * PageSize;
// Empty groups are necessarily invalid.
if (pg.empty()) {
return false;
}
auto& impl = this->GetImpl();
// We're going to validate that the group we'd expect is the group we see.
auto cur_it = pg.begin();
KPhysicalAddress cur_block_address = cur_it->GetAddress();
size_t cur_block_pages = cur_it->GetNumPages();
auto UpdateCurrentIterator = [&]() {
if (cur_block_pages == 0) {
if ((++cur_it) == pg.end()) {
return false;
}
cur_block_address = cur_it->GetAddress();
cur_block_pages = cur_it->GetNumPages();
}
return true;
};
// Begin traversal.
TraversalContext context;
TraversalEntry next_entry;
if (!impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), addr)) {
return false;
}
// Prepare tracking variables.
KPhysicalAddress cur_addr = next_entry.phys_addr;
size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
size_t tot_size = cur_size;
// Iterate, comparing expected to actual.
while (tot_size < size) {
if (!impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context))) {
return false;
}
if (next_entry.phys_addr != (cur_addr + cur_size)) {
const size_t cur_pages = cur_size / PageSize;
if (!IsHeapPhysicalAddress(cur_addr)) {
return false;
}
if (!UpdateCurrentIterator()) {
return false;
}
if (cur_block_address != cur_addr || cur_block_pages < cur_pages) {
return false;
}
cur_block_address += cur_size;
cur_block_pages -= cur_pages;
cur_addr = next_entry.phys_addr;
cur_size = next_entry.block_size;
} else {
cur_size += next_entry.block_size;
}
tot_size += next_entry.block_size;
}
// Ensure we compare the right amount for the last block.
if (tot_size > size) {
cur_size -= (tot_size - size);
}
if (!IsHeapPhysicalAddress(cur_addr)) {
return false;
}
if (!UpdateCurrentIterator()) {
return false;
}
return cur_block_address == cur_addr && cur_block_pages == (cur_size / PageSize);
}
Result KPageTableBase::GetContiguousMemoryRangeWithState(
MemoryRange* out, KProcessAddress address, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr) {
ASSERT(this->IsLockedByCurrentThread());
auto& impl = this->GetImpl();
// Begin a traversal.
TraversalContext context;
TraversalEntry cur_entry = {.phys_addr = 0, .block_size = 0};
R_UNLESS(impl.BeginTraversal(std::addressof(cur_entry), std::addressof(context), address),
ResultInvalidCurrentMemory);
// Traverse until we have enough size or we aren't contiguous any more.
const KPhysicalAddress phys_address = cur_entry.phys_addr;
size_t contig_size;
for (contig_size =
cur_entry.block_size - (GetInteger(phys_address) & (cur_entry.block_size - 1));
contig_size < size; contig_size += cur_entry.block_size) {
if (!impl.ContinueTraversal(std::addressof(cur_entry), std::addressof(context))) {
break;
}
if (cur_entry.phys_addr != phys_address + contig_size) {
break;
}
}
// Take the minimum size for our region.
size = std::min(size, contig_size);
// Check that the memory is contiguous (modulo the reference count bit).
const KMemoryState test_state_mask = state_mask | KMemoryState::FlagReferenceCounted;
const bool is_heap = R_SUCCEEDED(this->CheckMemoryStateContiguous(
address, size, test_state_mask, state | KMemoryState::FlagReferenceCounted, perm_mask, perm,
attr_mask, attr));
if (!is_heap) {
R_TRY(this->CheckMemoryStateContiguous(address, size, test_state_mask, state, perm_mask,
perm, attr_mask, attr));
}
// The memory is contiguous, so set the output range.
out->Set(phys_address, size, is_heap);
R_SUCCEED();
}
Result KPageTableBase::SetMemoryPermission(KProcessAddress addr, size_t size,
Svc::MemoryPermission svc_perm) {
const size_t num_pages = size / PageSize;
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Verify we can change the memory permission.
KMemoryState old_state;
KMemoryPermission old_perm;
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm), nullptr,
std::addressof(num_allocator_blocks), addr, size,
KMemoryState::FlagCanReprotect, KMemoryState::FlagCanReprotect,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::All, KMemoryAttribute::None));
// Determine new perm.
const KMemoryPermission new_perm = ConvertToKMemoryPermission(svc_perm);
R_SUCCEED_IF(old_perm == new_perm);
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Perform mapping operation.
const KPageProperties properties = {new_perm, false, false, DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, 0, false, properties,
OperationType::ChangePermissions, false));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, old_state, new_perm,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::None);
R_SUCCEED();
}
Result KPageTableBase::SetProcessMemoryPermission(KProcessAddress addr, size_t size,
Svc::MemoryPermission svc_perm) {
const size_t num_pages = size / PageSize;
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Verify we can change the memory permission.
KMemoryState old_state;
KMemoryPermission old_perm;
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm), nullptr,
std::addressof(num_allocator_blocks), addr, size,
KMemoryState::FlagCode, KMemoryState::FlagCode,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::All, KMemoryAttribute::None));
// Make a new page group for the region.
KPageGroup pg(m_kernel, m_block_info_manager);
// Determine new perm/state.
const KMemoryPermission new_perm = ConvertToKMemoryPermission(svc_perm);
KMemoryState new_state = old_state;
const bool is_w = (new_perm & KMemoryPermission::UserWrite) == KMemoryPermission::UserWrite;
const bool is_x = (new_perm & KMemoryPermission::UserExecute) == KMemoryPermission::UserExecute;
const bool was_x =
(old_perm & KMemoryPermission::UserExecute) == KMemoryPermission::UserExecute;
ASSERT(!(is_w && is_x));
if (is_w) {
switch (old_state) {
case KMemoryState::Code:
new_state = KMemoryState::CodeData;
break;
case KMemoryState::AliasCode:
new_state = KMemoryState::AliasCodeData;
break;
default:
UNREACHABLE();
}
}
// Create a page group, if we're setting execute permissions.
if (is_x) {
R_TRY(this->MakePageGroup(pg, GetInteger(addr), num_pages));
}
// Succeed if there's nothing to do.
R_SUCCEED_IF(old_perm == new_perm && old_state == new_state);
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Perform mapping operation.
const KPageProperties properties = {new_perm, false, false, DisableMergeAttribute::None};
const auto operation = was_x ? OperationType::ChangePermissionsAndRefreshAndFlush
: OperationType::ChangePermissions;
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, 0, false, properties, operation,
false));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, new_state, new_perm,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::None);
// Ensure cache coherency, if we're setting pages as executable.
if (is_x) {
for (const auto& block : pg) {
StoreDataCache(GetHeapVirtualPointer(m_kernel, block.GetAddress()), block.GetSize());
}
InvalidateInstructionCache(m_kernel, this, addr, size);
}
R_SUCCEED();
}
Result KPageTableBase::SetMemoryAttribute(KProcessAddress addr, size_t size, KMemoryAttribute mask,
KMemoryAttribute attr) {
const size_t num_pages = size / PageSize;
ASSERT((mask | KMemoryAttribute::SetMask) == KMemoryAttribute::SetMask);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Verify we can change the memory attribute.
KMemoryState old_state;
KMemoryPermission old_perm;
KMemoryAttribute old_attr;
size_t num_allocator_blocks;
constexpr KMemoryAttribute AttributeTestMask =
~(KMemoryAttribute::SetMask | KMemoryAttribute::DeviceShared);
const KMemoryState state_test_mask =
(True(mask & KMemoryAttribute::Uncached) ? KMemoryState::FlagCanChangeAttribute
: KMemoryState::None) |
(True(mask & KMemoryAttribute::PermissionLocked) ? KMemoryState::FlagCanPermissionLock
: KMemoryState::None);
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm),
std::addressof(old_attr), std::addressof(num_allocator_blocks),
addr, size, state_test_mask, state_test_mask,
KMemoryPermission::None, KMemoryPermission::None,
AttributeTestMask, KMemoryAttribute::None, ~AttributeTestMask));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// If we need to, perform a change attribute operation.
if (True(mask & KMemoryAttribute::Uncached)) {
// Determine the new attribute.
const KMemoryAttribute new_attr =
static_cast<KMemoryAttribute>(((old_attr & ~mask) | (attr & mask)));
// Perform operation.
const KPageProperties properties = {old_perm, false,
True(new_attr & KMemoryAttribute::Uncached),
DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, 0, false, properties,
OperationType::ChangePermissionsAndRefreshAndFlush, false));
}
// Update the blocks.
m_memory_block_manager.UpdateAttribute(std::addressof(allocator), addr, num_pages, mask, attr);
R_SUCCEED();
}
Result KPageTableBase::SetHeapSize(KProcessAddress* out, size_t size) {
// Lock the physical memory mutex.
KScopedLightLock map_phys_mem_lk(m_map_physical_memory_lock);
// Try to perform a reduction in heap, instead of an extension.
KProcessAddress cur_address;
size_t allocation_size;
{
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Validate that setting heap size is possible at all.
R_UNLESS(!m_is_kernel, ResultOutOfMemory);
R_UNLESS(size <= static_cast<size_t>(m_heap_region_end - m_heap_region_start),
ResultOutOfMemory);
R_UNLESS(size <= m_max_heap_size, ResultOutOfMemory);
if (size < static_cast<size_t>(m_current_heap_end - m_heap_region_start)) {
// The size being requested is less than the current size, so we need to free the end of
// the heap.
// Validate memory state.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(
std::addressof(num_allocator_blocks), m_heap_region_start + size,
(m_current_heap_end - m_heap_region_start) - size, KMemoryState::All,
KMemoryState::Normal, KMemoryPermission::All, KMemoryPermission::UserReadWrite,
KMemoryAttribute::All, KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager,
num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Unmap the end of the heap.
const size_t num_pages = ((m_current_heap_end - m_heap_region_start) - size) / PageSize;
const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), m_heap_region_start + size, num_pages, 0,
false, unmap_properties, OperationType::Unmap, false));
// Release the memory from the resource limit.
m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax,
num_pages * PageSize);
// Apply the memory block update.
m_memory_block_manager.Update(std::addressof(allocator), m_heap_region_start + size,
num_pages, KMemoryState::Free, KMemoryPermission::None,
KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::None,
size == 0 ? KMemoryBlockDisableMergeAttribute::Normal
: KMemoryBlockDisableMergeAttribute::None);
// Update the current heap end.
m_current_heap_end = m_heap_region_start + size;
// Set the output.
*out = m_heap_region_start;
R_SUCCEED();
} else if (size == static_cast<size_t>(m_current_heap_end - m_heap_region_start)) {
// The size requested is exactly the current size.
*out = m_heap_region_start;
R_SUCCEED();
} else {
// We have to allocate memory. Determine how much to allocate and where while the table
// is locked.
cur_address = m_current_heap_end;
allocation_size = size - (m_current_heap_end - m_heap_region_start);
}
}
// Reserve memory for the heap extension.
KScopedResourceReservation memory_reservation(
m_resource_limit, Svc::LimitableResource::PhysicalMemoryMax, allocation_size);
R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
// Allocate pages for the heap extension.
KPageGroup pg(m_kernel, m_block_info_manager);
R_TRY(m_kernel.MemoryManager().AllocateAndOpen(std::addressof(pg), allocation_size / PageSize,
m_allocate_option));
// Close the opened pages when we're done with them.
// If the mapping succeeds, each page will gain an extra reference, otherwise they will be freed
// automatically.
SCOPE_EXIT {
pg.Close();
};
// Clear all the newly allocated pages.
for (const auto& it : pg) {
ClearBackingRegion(m_system, it.GetAddress(), it.GetSize(), m_heap_fill_value);
}
// Map the pages.
{
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Ensure that the heap hasn't changed since we began executing.
ASSERT(cur_address == m_current_heap_end);
// Check the memory state.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), m_current_heap_end,
allocation_size, KMemoryState::All, KMemoryState::Free,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(
std::addressof(allocator_result), m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Map the pages.
const size_t num_pages = allocation_size / PageSize;
const KPageProperties map_properties = {KMemoryPermission::UserReadWrite, false, false,
(m_current_heap_end == m_heap_region_start)
? DisableMergeAttribute::DisableHead
: DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), m_current_heap_end, num_pages, pg,
map_properties, OperationType::MapGroup, false));
// We succeeded, so commit our memory reservation.
memory_reservation.Commit();
// Apply the memory block update.
m_memory_block_manager.Update(
std::addressof(allocator), m_current_heap_end, num_pages, KMemoryState::Normal,
KMemoryPermission::UserReadWrite, KMemoryAttribute::None,
m_heap_region_start == m_current_heap_end ? KMemoryBlockDisableMergeAttribute::Normal
: KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::None);
// Update the current heap end.
m_current_heap_end = m_heap_region_start + size;
// Set the output.
*out = m_heap_region_start;
R_SUCCEED();
}
}
Result KPageTableBase::SetMaxHeapSize(size_t size) {
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Only process page tables are allowed to set heap size.
ASSERT(!this->IsKernel());
m_max_heap_size = size;
R_SUCCEED();
}
Result KPageTableBase::QueryInfo(KMemoryInfo* out_info, Svc::PageInfo* out_page_info,
KProcessAddress addr) const {
// If the address is invalid, create a fake block.
if (!this->Contains(addr, 1)) {
*out_info = {
.m_address = GetInteger(m_address_space_end),
.m_size = 0 - GetInteger(m_address_space_end),
.m_state = static_cast<KMemoryState>(Svc::MemoryState::Inaccessible),
.m_device_disable_merge_left_count = 0,
.m_device_disable_merge_right_count = 0,
.m_ipc_lock_count = 0,
.m_device_use_count = 0,
.m_ipc_disable_merge_count = 0,
.m_permission = KMemoryPermission::None,
.m_attribute = KMemoryAttribute::None,
.m_original_permission = KMemoryPermission::None,
.m_disable_merge_attribute = KMemoryBlockDisableMergeAttribute::None,
};
out_page_info->flags = 0;
R_SUCCEED();
}
// Otherwise, lock the table and query.
KScopedLightLock lk(m_general_lock);
R_RETURN(this->QueryInfoImpl(out_info, out_page_info, addr));
}
Result KPageTableBase::QueryPhysicalAddress(Svc::lp64::PhysicalMemoryInfo* out,
KProcessAddress address) const {
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Align the address down to page size.
address = Common::AlignDown(GetInteger(address), PageSize);
// Verify that we can query the address.
KMemoryInfo info;
Svc::PageInfo page_info;
R_TRY(this->QueryInfoImpl(std::addressof(info), std::addressof(page_info), address));
// Check the memory state.
R_TRY(this->CheckMemoryState(info, KMemoryState::FlagCanQueryPhysical,
KMemoryState::FlagCanQueryPhysical,
KMemoryPermission::UserReadExecute, KMemoryPermission::UserRead,
KMemoryAttribute::None, KMemoryAttribute::None));
// Prepare to traverse.
KPhysicalAddress phys_addr;
size_t phys_size;
KProcessAddress virt_addr = info.GetAddress();
KProcessAddress end_addr = info.GetEndAddress();
// Perform traversal.
{
// Begin traversal.
TraversalContext context;
TraversalEntry next_entry;
bool traverse_valid =
m_impl->BeginTraversal(std::addressof(next_entry), std::addressof(context), virt_addr);
R_UNLESS(traverse_valid, ResultInvalidCurrentMemory);
// Set tracking variables.
phys_addr = next_entry.phys_addr;
phys_size = next_entry.block_size - (GetInteger(phys_addr) & (next_entry.block_size - 1));
// Iterate.
while (true) {
// Continue the traversal.
traverse_valid =
m_impl->ContinueTraversal(std::addressof(next_entry), std::addressof(context));
if (!traverse_valid) {
break;
}
if (next_entry.phys_addr != (phys_addr + phys_size)) {
// Check if we're done.
if (virt_addr <= address && address <= virt_addr + phys_size - 1) {
break;
}
// Advance.
phys_addr = next_entry.phys_addr;
virt_addr += next_entry.block_size;
phys_size =
next_entry.block_size - (GetInteger(phys_addr) & (next_entry.block_size - 1));
} else {
phys_size += next_entry.block_size;
}
// Check if we're done.
if (end_addr < virt_addr + phys_size) {
break;
}
}
ASSERT(virt_addr <= address && address <= virt_addr + phys_size - 1);
// Ensure we use the right size.
if (end_addr < virt_addr + phys_size) {
phys_size = end_addr - virt_addr;
}
}
// Set the output.
out->physical_address = GetInteger(phys_addr);
out->virtual_address = GetInteger(virt_addr);
out->size = phys_size;
R_SUCCEED();
}
Result KPageTableBase::MapIoImpl(KProcessAddress* out, PageLinkedList* page_list,
KPhysicalAddress phys_addr, size_t size, KMemoryState state,
KMemoryPermission perm) {
// Check pre-conditions.
ASSERT(this->IsLockedByCurrentThread());
ASSERT(Common::IsAligned(GetInteger(phys_addr), PageSize));
ASSERT(Common::IsAligned(size, PageSize));
ASSERT(size > 0);
R_UNLESS(phys_addr < phys_addr + size, ResultInvalidAddress);
const size_t num_pages = size / PageSize;
const KPhysicalAddress last = phys_addr + size - 1;
// Get region extents.
const KProcessAddress region_start = m_kernel_map_region_start;
const size_t region_size = m_kernel_map_region_end - m_kernel_map_region_start;
const size_t region_num_pages = region_size / PageSize;
ASSERT(this->CanContain(region_start, region_size, state));
// Locate the memory region.
const KMemoryRegion* region = KMemoryLayout::Find(m_kernel.MemoryLayout(), phys_addr);
R_UNLESS(region != nullptr, ResultInvalidAddress);
ASSERT(region->Contains(GetInteger(phys_addr)));
// Ensure that the region is mappable.
const bool is_rw = perm == KMemoryPermission::UserReadWrite;
while (true) {
// Check that the region exists.
R_UNLESS(region != nullptr, ResultInvalidAddress);
// Check the region attributes.
R_UNLESS(!region->IsDerivedFrom(KMemoryRegionType_Dram), ResultInvalidAddress);
R_UNLESS(!region->HasTypeAttribute(KMemoryRegionAttr_UserReadOnly) || !is_rw,
ResultInvalidAddress);
R_UNLESS(!region->HasTypeAttribute(KMemoryRegionAttr_NoUserMap), ResultInvalidAddress);
// Check if we're done.
if (GetInteger(last) <= region->GetLastAddress()) {
break;
}
// Advance.
region = region->GetNext();
};
// Select an address to map at.
KProcessAddress addr = 0;
{
const size_t alignment = 4_KiB;
const KPhysicalAddress aligned_phys =
Common::AlignUp(GetInteger(phys_addr), alignment) + alignment - 1;
R_UNLESS(aligned_phys > phys_addr, ResultInvalidAddress);
const KPhysicalAddress last_aligned_paddr =
Common::AlignDown(GetInteger(last) + 1, alignment) - 1;
R_UNLESS((last_aligned_paddr <= last && aligned_phys <= last_aligned_paddr),
ResultInvalidAddress);
addr = this->FindFreeArea(region_start, region_num_pages, num_pages, alignment, 0,
this->GetNumGuardPages());
R_UNLESS(addr != 0, ResultOutOfMemory);
}
// Check that we can map IO here.
ASSERT(this->CanContain(addr, size, state));
R_ASSERT(this->CheckMemoryState(addr, size, KMemoryState::All, KMemoryState::Free,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryAttribute::None));
// Perform mapping operation.
const KPageProperties properties = {perm, state == KMemoryState::IoRegister, false,
DisableMergeAttribute::DisableHead};
R_TRY(this->Operate(page_list, addr, num_pages, phys_addr, true, properties, OperationType::Map,
false));
// Set the output address.
*out = addr;
R_SUCCEED();
}
Result KPageTableBase::MapIo(KPhysicalAddress phys_addr, size_t size, KMemoryPermission perm) {
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Map the io memory.
KProcessAddress addr;
R_TRY(this->MapIoImpl(std::addressof(addr), updater.GetPageList(), phys_addr, size,
KMemoryState::IoRegister, perm));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), addr, size / PageSize,
KMemoryState::IoRegister, perm, KMemoryAttribute::Locked,
KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
// We successfully mapped the pages.
R_SUCCEED();
}
Result KPageTableBase::MapIoRegion(KProcessAddress dst_address, KPhysicalAddress phys_addr,
size_t size, Svc::MemoryMapping mapping,
Svc::MemoryPermission svc_perm) {
const size_t num_pages = size / PageSize;
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Validate the memory state.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), dst_address, size,
KMemoryState::All, KMemoryState::None, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Perform mapping operation.
const KMemoryPermission perm = ConvertToKMemoryPermission(svc_perm);
const KPageProperties properties = {perm, mapping == Svc::MemoryMapping::IoRegister,
mapping == Svc::MemoryMapping::Uncached,
DisableMergeAttribute::DisableHead};
R_TRY(this->Operate(updater.GetPageList(), dst_address, num_pages, phys_addr, true, properties,
OperationType::Map, false));
// Update the blocks.
const auto state =
mapping == Svc::MemoryMapping::Memory ? KMemoryState::IoMemory : KMemoryState::IoRegister;
m_memory_block_manager.Update(
std::addressof(allocator), dst_address, num_pages, state, perm, KMemoryAttribute::Locked,
KMemoryBlockDisableMergeAttribute::Normal, KMemoryBlockDisableMergeAttribute::None);
// We successfully mapped the pages.
R_SUCCEED();
}
Result KPageTableBase::UnmapIoRegion(KProcessAddress dst_address, KPhysicalAddress phys_addr,
size_t size, Svc::MemoryMapping mapping) {
const size_t num_pages = size / PageSize;
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Validate the memory state.
KMemoryState old_state;
KMemoryPermission old_perm;
KMemoryAttribute old_attr;
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(
std::addressof(old_state), std::addressof(old_perm), std::addressof(old_attr),
std::addressof(num_allocator_blocks), dst_address, size, KMemoryState::All,
mapping == Svc::MemoryMapping::Memory ? KMemoryState::IoMemory : KMemoryState::IoRegister,
KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::All,
KMemoryAttribute::Locked));
// Validate that the region being unmapped corresponds to the physical range described.
{
// Get the impl.
auto& impl = this->GetImpl();
// Begin traversal.
TraversalContext context;
TraversalEntry next_entry;
ASSERT(
impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), dst_address));
// Check that the physical region matches.
R_UNLESS(next_entry.phys_addr == phys_addr, ResultInvalidMemoryRegion);
// Iterate.
for (size_t checked_size =
next_entry.block_size - (GetInteger(phys_addr) & (next_entry.block_size - 1));
checked_size < size; checked_size += next_entry.block_size) {
// Continue the traversal.
ASSERT(impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context)));
// Check that the physical region matches.
R_UNLESS(next_entry.phys_addr == phys_addr + checked_size, ResultInvalidMemoryRegion);
}
}
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// If the region being unmapped is Memory, synchronize.
if (mapping == Svc::MemoryMapping::Memory) {
// Change the region to be uncached.
const KPageProperties properties = {old_perm, false, true, DisableMergeAttribute::None};
R_ASSERT(this->Operate(updater.GetPageList(), dst_address, num_pages, 0, false, properties,
OperationType::ChangePermissionsAndRefresh, false));
// Temporarily unlock ourselves, so that other operations can occur while we flush the
// region.
m_general_lock.Unlock();
SCOPE_EXIT {
m_general_lock.Lock();
};
// Flush the region.
R_ASSERT(FlushDataCache(dst_address, size));
}
// Perform the unmap.
const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
DisableMergeAttribute::None};
R_ASSERT(this->Operate(updater.GetPageList(), dst_address, num_pages, 0, false,
unmap_properties, OperationType::Unmap, false));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), dst_address, num_pages,
KMemoryState::Free, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal);
R_SUCCEED();
}
Result KPageTableBase::MapStatic(KPhysicalAddress phys_addr, size_t size, KMemoryPermission perm) {
ASSERT(Common::IsAligned(GetInteger(phys_addr), PageSize));
ASSERT(Common::IsAligned(size, PageSize));
ASSERT(size > 0);
R_UNLESS(phys_addr < phys_addr + size, ResultInvalidAddress);
const size_t num_pages = size / PageSize;
const KPhysicalAddress last = phys_addr + size - 1;
// Get region extents.
const KProcessAddress region_start = this->GetRegionAddress(KMemoryState::Static);
const size_t region_size = this->GetRegionSize(KMemoryState::Static);
const size_t region_num_pages = region_size / PageSize;
// Locate the memory region.
const KMemoryRegion* region = KMemoryLayout::Find(m_kernel.MemoryLayout(), phys_addr);
R_UNLESS(region != nullptr, ResultInvalidAddress);
ASSERT(region->Contains(GetInteger(phys_addr)));
R_UNLESS(GetInteger(last) <= region->GetLastAddress(), ResultInvalidAddress);
// Check the region attributes.
const bool is_rw = perm == KMemoryPermission::UserReadWrite;
R_UNLESS(region->IsDerivedFrom(KMemoryRegionType_Dram), ResultInvalidAddress);
R_UNLESS(!region->HasTypeAttribute(KMemoryRegionAttr_NoUserMap), ResultInvalidAddress);
R_UNLESS(!region->HasTypeAttribute(KMemoryRegionAttr_UserReadOnly) || !is_rw,
ResultInvalidAddress);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Select an address to map at.
KProcessAddress addr = 0;
{
const size_t alignment = 4_KiB;
const KPhysicalAddress aligned_phys =
Common::AlignUp(GetInteger(phys_addr), alignment) + alignment - 1;
R_UNLESS(aligned_phys > phys_addr, ResultInvalidAddress);
const KPhysicalAddress last_aligned_paddr =
Common::AlignDown(GetInteger(last) + 1, alignment) - 1;
R_UNLESS((last_aligned_paddr <= last && aligned_phys <= last_aligned_paddr),
ResultInvalidAddress);
addr = this->FindFreeArea(region_start, region_num_pages, num_pages, alignment, 0,
this->GetNumGuardPages());
R_UNLESS(addr != 0, ResultOutOfMemory);
}
// Check that we can map static here.
ASSERT(this->CanContain(addr, size, KMemoryState::Static));
R_ASSERT(this->CheckMemoryState(addr, size, KMemoryState::All, KMemoryState::Free,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Perform mapping operation.
const KPageProperties properties = {perm, false, false, DisableMergeAttribute::DisableHead};
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, phys_addr, true, properties,
OperationType::Map, false));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, KMemoryState::Static,
perm, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
// We successfully mapped the pages.
R_SUCCEED();
}
Result KPageTableBase::MapRegion(KMemoryRegionType region_type, KMemoryPermission perm) {
// Get the memory region.
const KMemoryRegion* region =
m_kernel.MemoryLayout().GetPhysicalMemoryRegionTree().FindFirstDerived(region_type);
R_UNLESS(region != nullptr, ResultOutOfRange);
// Check that the region is valid.
ASSERT(region->GetEndAddress() != 0);
// Map the region.
R_TRY_CATCH(this->MapStatic(region->GetAddress(), region->GetSize(), perm)){
R_CONVERT(ResultInvalidAddress, ResultOutOfRange)} R_END_TRY_CATCH;
R_SUCCEED();
}
Result KPageTableBase::MapPages(KProcessAddress* out_addr, size_t num_pages, size_t alignment,
KPhysicalAddress phys_addr, bool is_pa_valid,
KProcessAddress region_start, size_t region_num_pages,
KMemoryState state, KMemoryPermission perm) {
ASSERT(Common::IsAligned(alignment, PageSize) && alignment >= PageSize);
// Ensure this is a valid map request.
R_UNLESS(this->CanContain(region_start, region_num_pages * PageSize, state),
ResultInvalidCurrentMemory);
R_UNLESS(num_pages < region_num_pages, ResultOutOfMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Find a random address to map at.
KProcessAddress addr = this->FindFreeArea(region_start, region_num_pages, num_pages, alignment,
0, this->GetNumGuardPages());
R_UNLESS(addr != 0, ResultOutOfMemory);
ASSERT(Common::IsAligned(GetInteger(addr), alignment));
ASSERT(this->CanContain(addr, num_pages * PageSize, state));
R_ASSERT(this->CheckMemoryState(
addr, num_pages * PageSize, KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::None, KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Perform mapping operation.
if (is_pa_valid) {
const KPageProperties properties = {perm, false, false, DisableMergeAttribute::DisableHead};
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, phys_addr, true, properties,
OperationType::Map, false));
} else {
R_TRY(this->AllocateAndMapPagesImpl(updater.GetPageList(), addr, num_pages, perm));
}
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, state, perm,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
// We successfully mapped the pages.
*out_addr = addr;
R_SUCCEED();
}
Result KPageTableBase::MapPages(KProcessAddress address, size_t num_pages, KMemoryState state,
KMemoryPermission perm) {
// Check that the map is in range.
const size_t size = num_pages * PageSize;
R_UNLESS(this->CanContain(address, size, state), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the memory state.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Map the pages.
R_TRY(this->AllocateAndMapPagesImpl(updater.GetPageList(), address, num_pages, perm));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), address, num_pages, state, perm,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
R_SUCCEED();
}
Result KPageTableBase::UnmapPages(KProcessAddress address, size_t num_pages, KMemoryState state) {
// Check that the unmap is in range.
const size_t size = num_pages * PageSize;
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the memory state.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
KMemoryState::All, state, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::All,
KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Perform the unmap.
const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), address, num_pages, 0, false, unmap_properties,
OperationType::Unmap, false));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), address, num_pages, KMemoryState::Free,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal);
R_SUCCEED();
}
Result KPageTableBase::MapPageGroup(KProcessAddress* out_addr, const KPageGroup& pg,
KProcessAddress region_start, size_t region_num_pages,
KMemoryState state, KMemoryPermission perm) {
ASSERT(!this->IsLockedByCurrentThread());
// Ensure this is a valid map request.
const size_t num_pages = pg.GetNumPages();
R_UNLESS(this->CanContain(region_start, region_num_pages * PageSize, state),
ResultInvalidCurrentMemory);
R_UNLESS(num_pages < region_num_pages, ResultOutOfMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Find a random address to map at.
KProcessAddress addr = this->FindFreeArea(region_start, region_num_pages, num_pages, PageSize,
0, this->GetNumGuardPages());
R_UNLESS(addr != 0, ResultOutOfMemory);
ASSERT(this->CanContain(addr, num_pages * PageSize, state));
R_ASSERT(this->CheckMemoryState(
addr, num_pages * PageSize, KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::None, KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Perform mapping operation.
const KPageProperties properties = {perm, false, false, DisableMergeAttribute::DisableHead};
R_TRY(this->MapPageGroupImpl(updater.GetPageList(), addr, pg, properties, false));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, state, perm,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
// We successfully mapped the pages.
*out_addr = addr;
R_SUCCEED();
}
Result KPageTableBase::MapPageGroup(KProcessAddress addr, const KPageGroup& pg, KMemoryState state,
KMemoryPermission perm) {
ASSERT(!this->IsLockedByCurrentThread());
// Ensure this is a valid map request.
const size_t num_pages = pg.GetNumPages();
const size_t size = num_pages * PageSize;
R_UNLESS(this->CanContain(addr, size, state), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check if state allows us to map.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), addr, size,
KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Perform mapping operation.
const KPageProperties properties = {perm, false, false, DisableMergeAttribute::DisableHead};
R_TRY(this->MapPageGroupImpl(updater.GetPageList(), addr, pg, properties, false));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, state, perm,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
// We successfully mapped the pages.
R_SUCCEED();
}
Result KPageTableBase::UnmapPageGroup(KProcessAddress address, const KPageGroup& pg,
KMemoryState state) {
ASSERT(!this->IsLockedByCurrentThread());
// Ensure this is a valid unmap request.
const size_t num_pages = pg.GetNumPages();
const size_t size = num_pages * PageSize;
R_UNLESS(this->CanContain(address, size, state), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check if state allows us to unmap.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
KMemoryState::All, state, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::All,
KMemoryAttribute::None));
// Check that the page group is valid.
R_UNLESS(this->IsValidPageGroup(pg, address, num_pages), ResultInvalidCurrentMemory);
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Perform unmapping operation.
const KPageProperties properties = {KMemoryPermission::None, false, false,
DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), address, num_pages, 0, false, properties,
OperationType::Unmap, false));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), address, num_pages, KMemoryState::Free,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal);
R_SUCCEED();
}
Result KPageTableBase::MakeAndOpenPageGroup(KPageGroup* out, KProcessAddress address,
size_t num_pages, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask,
KMemoryPermission perm, KMemoryAttribute attr_mask,
KMemoryAttribute attr) {
// Ensure that the page group isn't null.
ASSERT(out != nullptr);
// Make sure that the region we're mapping is valid for the table.
const size_t size = num_pages * PageSize;
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check if state allows us to create the group.
R_TRY(this->CheckMemoryState(address, size, state_mask | KMemoryState::FlagReferenceCounted,
state | KMemoryState::FlagReferenceCounted, perm_mask, perm,
attr_mask, attr));
// Create a new page group for the region.
R_TRY(this->MakePageGroup(*out, address, num_pages));
// Open a new reference to the pages in the group.
out->Open();
R_SUCCEED();
}
Result KPageTableBase::InvalidateProcessDataCache(KProcessAddress address, size_t size) {
// Check that the region is in range.
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the memory state.
R_TRY(this->CheckMemoryStateContiguous(
address, size, KMemoryState::FlagReferenceCounted, KMemoryState::FlagReferenceCounted,
KMemoryPermission::UserReadWrite, KMemoryPermission::UserReadWrite,
KMemoryAttribute::Uncached, KMemoryAttribute::None));
// Get the impl.
auto& impl = this->GetImpl();
// Begin traversal.
TraversalContext context;
TraversalEntry next_entry;
bool traverse_valid =
impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), address);
R_UNLESS(traverse_valid, ResultInvalidCurrentMemory);
// Prepare tracking variables.
KPhysicalAddress cur_addr = next_entry.phys_addr;
size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
size_t tot_size = cur_size;
// Iterate.
while (tot_size < size) {
// Continue the traversal.
traverse_valid =
impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
R_UNLESS(traverse_valid, ResultInvalidCurrentMemory);
if (next_entry.phys_addr != (cur_addr + cur_size)) {
// Check that the pages are linearly mapped.
R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
// Invalidate the block.
if (cur_size > 0) {
// NOTE: Nintendo does not check the result of invalidation.
InvalidateDataCache(GetLinearMappedVirtualPointer(m_kernel, cur_addr), cur_size);
}
// Advance.
cur_addr = next_entry.phys_addr;
cur_size = next_entry.block_size;
} else {
cur_size += next_entry.block_size;
}
tot_size += next_entry.block_size;
}
// Ensure we use the right size for the last block.
if (tot_size > size) {
cur_size -= (tot_size - size);
}
// Check that the last block is linearly mapped.
R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
// Invalidate the last block.
if (cur_size > 0) {
// NOTE: Nintendo does not check the result of invalidation.
InvalidateDataCache(GetLinearMappedVirtualPointer(m_kernel, cur_addr), cur_size);
}
R_SUCCEED();
}
Result KPageTableBase::InvalidateCurrentProcessDataCache(KProcessAddress address, size_t size) {
// Check pre-condition: this is being called on the current process.
ASSERT(this == std::addressof(GetCurrentProcess(m_kernel).GetPageTable().GetBasePageTable()));
// Check that the region is in range.
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the memory state.
R_TRY(this->CheckMemoryStateContiguous(
address, size, KMemoryState::FlagReferenceCounted, KMemoryState::FlagReferenceCounted,
KMemoryPermission::UserReadWrite, KMemoryPermission::UserReadWrite,
KMemoryAttribute::Uncached, KMemoryAttribute::None));
// Invalidate the data cache.
R_RETURN(InvalidateDataCache(address, size));
}
Result KPageTableBase::ReadDebugMemory(KProcessAddress dst_address, KProcessAddress src_address,
size_t size) {
// Lightly validate the region is in range.
R_UNLESS(this->Contains(src_address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Require that the memory either be user readable or debuggable.
const bool can_read = R_SUCCEEDED(this->CheckMemoryStateContiguous(
src_address, size, KMemoryState::None, KMemoryState::None, KMemoryPermission::UserRead,
KMemoryPermission::UserRead, KMemoryAttribute::None, KMemoryAttribute::None));
if (!can_read) {
const bool can_debug = R_SUCCEEDED(this->CheckMemoryStateContiguous(
src_address, size, KMemoryState::FlagCanDebug, KMemoryState::FlagCanDebug,
KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::None,
KMemoryAttribute::None));
R_UNLESS(can_debug, ResultInvalidCurrentMemory);
}
// Get the impl.
auto& impl = this->GetImpl();
auto& dst_memory = GetCurrentMemory(m_system.Kernel());
// Begin traversal.
TraversalContext context;
TraversalEntry next_entry;
bool traverse_valid =
impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), src_address);
R_UNLESS(traverse_valid, ResultInvalidCurrentMemory);
// Prepare tracking variables.
KPhysicalAddress cur_addr = next_entry.phys_addr;
size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
size_t tot_size = cur_size;
auto PerformCopy = [&]() -> Result {
// Ensure the address is linear mapped.
R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
// Copy as much aligned data as we can.
if (cur_size >= sizeof(u32)) {
const size_t copy_size = Common::AlignDown(cur_size, sizeof(u32));
const void* copy_src = GetLinearMappedVirtualPointer(m_kernel, cur_addr);
FlushDataCache(copy_src, copy_size);
R_UNLESS(dst_memory.WriteBlock(dst_address, copy_src, copy_size), ResultInvalidPointer);
dst_address += copy_size;
cur_addr += copy_size;
cur_size -= copy_size;
}
// Copy remaining data.
if (cur_size > 0) {
const void* copy_src = GetLinearMappedVirtualPointer(m_kernel, cur_addr);
FlushDataCache(copy_src, cur_size);
R_UNLESS(dst_memory.WriteBlock(dst_address, copy_src, cur_size), ResultInvalidPointer);
}
R_SUCCEED();
};
// Iterate.
while (tot_size < size) {
// Continue the traversal.
traverse_valid =
impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
ASSERT(traverse_valid);
if (next_entry.phys_addr != (cur_addr + cur_size)) {
// Perform copy.
R_TRY(PerformCopy());
// Advance.
dst_address += cur_size;
cur_addr = next_entry.phys_addr;
cur_size = next_entry.block_size;
} else {
cur_size += next_entry.block_size;
}
tot_size += next_entry.block_size;
}
// Ensure we use the right size for the last block.
if (tot_size > size) {
cur_size -= (tot_size - size);
}
// Perform copy for the last block.
R_TRY(PerformCopy());
R_SUCCEED();
}
Result KPageTableBase::WriteDebugMemory(KProcessAddress dst_address, KProcessAddress src_address,
size_t size) {
// Lightly validate the region is in range.
R_UNLESS(this->Contains(dst_address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Require that the memory either be user writable or debuggable.
const bool can_read = R_SUCCEEDED(this->CheckMemoryStateContiguous(
dst_address, size, KMemoryState::None, KMemoryState::None, KMemoryPermission::UserReadWrite,
KMemoryPermission::UserReadWrite, KMemoryAttribute::None, KMemoryAttribute::None));
if (!can_read) {
const bool can_debug = R_SUCCEEDED(this->CheckMemoryStateContiguous(
dst_address, size, KMemoryState::FlagCanDebug, KMemoryState::FlagCanDebug,
KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::None,
KMemoryAttribute::None));
R_UNLESS(can_debug, ResultInvalidCurrentMemory);
}
// Get the impl.
auto& impl = this->GetImpl();
auto& src_memory = GetCurrentMemory(m_system.Kernel());
// Begin traversal.
TraversalContext context;
TraversalEntry next_entry;
bool traverse_valid =
impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), dst_address);
R_UNLESS(traverse_valid, ResultInvalidCurrentMemory);
// Prepare tracking variables.
KPhysicalAddress cur_addr = next_entry.phys_addr;
size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
size_t tot_size = cur_size;
auto PerformCopy = [&]() -> Result {
// Ensure the address is linear mapped.
R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
// Copy as much aligned data as we can.
if (cur_size >= sizeof(u32)) {
const size_t copy_size = Common::AlignDown(cur_size, sizeof(u32));
void* copy_dst = GetLinearMappedVirtualPointer(m_kernel, cur_addr);
R_UNLESS(src_memory.ReadBlock(src_address, copy_dst, copy_size),
ResultInvalidCurrentMemory);
StoreDataCache(GetLinearMappedVirtualPointer(m_kernel, cur_addr), copy_size);
src_address += copy_size;
cur_addr += copy_size;
cur_size -= copy_size;
}
// Copy remaining data.
if (cur_size > 0) {
void* copy_dst = GetLinearMappedVirtualPointer(m_kernel, cur_addr);
R_UNLESS(src_memory.ReadBlock(src_address, copy_dst, cur_size),
ResultInvalidCurrentMemory);
StoreDataCache(GetLinearMappedVirtualPointer(m_kernel, cur_addr), cur_size);
}
R_SUCCEED();
};
// Iterate.
while (tot_size < size) {
// Continue the traversal.
traverse_valid =
impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
ASSERT(traverse_valid);
if (next_entry.phys_addr != (cur_addr + cur_size)) {
// Perform copy.
R_TRY(PerformCopy());
// Advance.
src_address += cur_size;
cur_addr = next_entry.phys_addr;
cur_size = next_entry.block_size;
} else {
cur_size += next_entry.block_size;
}
tot_size += next_entry.block_size;
}
// Ensure we use the right size for the last block.
if (tot_size > size) {
cur_size -= (tot_size - size);
}
// Perform copy for the last block.
R_TRY(PerformCopy());
// Invalidate the instruction cache, as this svc allows modifying executable pages.
InvalidateInstructionCache(m_kernel, this, dst_address, size);
R_SUCCEED();
}
Result KPageTableBase::ReadIoMemoryImpl(KProcessAddress dst_addr, KPhysicalAddress phys_addr,
size_t size, KMemoryState state) {
// Check pre-conditions.
ASSERT(this->IsLockedByCurrentThread());
// Determine the mapping extents.
const KPhysicalAddress map_start = Common::AlignDown(GetInteger(phys_addr), PageSize);
const KPhysicalAddress map_end = Common::AlignUp(GetInteger(phys_addr) + size, PageSize);
const size_t map_size = map_end - map_start;
// Get the memory reference to write into.
auto& dst_memory = GetCurrentMemory(m_kernel);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Temporarily map the io memory.
KProcessAddress io_addr;
R_TRY(this->MapIoImpl(std::addressof(io_addr), updater.GetPageList(), map_start, map_size,
state, KMemoryPermission::UserRead));
// Ensure we unmap the io memory when we're done with it.
const KPageProperties unmap_properties =
KPageProperties{KMemoryPermission::None, false, false, DisableMergeAttribute::None};
SCOPE_EXIT {
R_ASSERT(this->Operate(updater.GetPageList(), io_addr, map_size / PageSize, 0, false,
unmap_properties, OperationType::Unmap, true));
};
// Read the memory.
const KProcessAddress read_addr = io_addr + (GetInteger(phys_addr) & (PageSize - 1));
dst_memory.CopyBlock(dst_addr, read_addr, size);
R_SUCCEED();
}
Result KPageTableBase::WriteIoMemoryImpl(KPhysicalAddress phys_addr, KProcessAddress src_addr,
size_t size, KMemoryState state) {
// Check pre-conditions.
ASSERT(this->IsLockedByCurrentThread());
// Determine the mapping extents.
const KPhysicalAddress map_start = Common::AlignDown(GetInteger(phys_addr), PageSize);
const KPhysicalAddress map_end = Common::AlignUp(GetInteger(phys_addr) + size, PageSize);
const size_t map_size = map_end - map_start;
// Get the memory reference to read from.
auto& src_memory = GetCurrentMemory(m_kernel);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Temporarily map the io memory.
KProcessAddress io_addr;
R_TRY(this->MapIoImpl(std::addressof(io_addr), updater.GetPageList(), map_start, map_size,
state, KMemoryPermission::UserReadWrite));
// Ensure we unmap the io memory when we're done with it.
const KPageProperties unmap_properties =
KPageProperties{KMemoryPermission::None, false, false, DisableMergeAttribute::None};
SCOPE_EXIT {
R_ASSERT(this->Operate(updater.GetPageList(), io_addr, map_size / PageSize, 0, false,
unmap_properties, OperationType::Unmap, true));
};
// Write the memory.
const KProcessAddress write_addr = io_addr + (GetInteger(phys_addr) & (PageSize - 1));
R_UNLESS(src_memory.CopyBlock(write_addr, src_addr, size), ResultInvalidPointer);
R_SUCCEED();
}
Result KPageTableBase::ReadDebugIoMemory(KProcessAddress dst_address, KProcessAddress src_address,
size_t size, KMemoryState state) {
// Lightly validate the range before doing anything else.
R_UNLESS(this->Contains(src_address, size), ResultInvalidCurrentMemory);
// We need to lock both this table, and the current process's table, so set up some aliases.
KPageTableBase& src_page_table = *this;
KPageTableBase& dst_page_table = GetCurrentProcess(m_kernel).GetPageTable().GetBasePageTable();
// Acquire the table locks.
KScopedLightLockPair lk(src_page_table.m_general_lock, dst_page_table.m_general_lock);
// Check that the desired range is readable io memory.
R_TRY(this->CheckMemoryStateContiguous(src_address, size, KMemoryState::All, state,
KMemoryPermission::UserRead, KMemoryPermission::UserRead,
KMemoryAttribute::None, KMemoryAttribute::None));
// Read the memory.
KProcessAddress dst = dst_address;
const KProcessAddress last_address = src_address + size - 1;
while (src_address <= last_address) {
// Get the current physical address.
KPhysicalAddress phys_addr;
ASSERT(src_page_table.GetPhysicalAddressLocked(std::addressof(phys_addr), src_address));
// Determine the current read size.
const size_t cur_size =
std::min<size_t>(last_address - src_address + 1,
Common::AlignDown(GetInteger(src_address) + PageSize, PageSize) -
GetInteger(src_address));
// Read.
R_TRY(dst_page_table.ReadIoMemoryImpl(dst, phys_addr, cur_size, state));
// Advance.
src_address += cur_size;
dst += cur_size;
}
R_SUCCEED();
}
Result KPageTableBase::WriteDebugIoMemory(KProcessAddress dst_address, KProcessAddress src_address,
size_t size, KMemoryState state) {
// Lightly validate the range before doing anything else.
R_UNLESS(this->Contains(dst_address, size), ResultInvalidCurrentMemory);
// We need to lock both this table, and the current process's table, so set up some aliases.
KPageTableBase& src_page_table = *this;
KPageTableBase& dst_page_table = GetCurrentProcess(m_kernel).GetPageTable().GetBasePageTable();
// Acquire the table locks.
KScopedLightLockPair lk(src_page_table.m_general_lock, dst_page_table.m_general_lock);
// Check that the desired range is writable io memory.
R_TRY(this->CheckMemoryStateContiguous(
dst_address, size, KMemoryState::All, state, KMemoryPermission::UserReadWrite,
KMemoryPermission::UserReadWrite, KMemoryAttribute::None, KMemoryAttribute::None));
// Read the memory.
KProcessAddress src = src_address;
const KProcessAddress last_address = dst_address + size - 1;
while (dst_address <= last_address) {
// Get the current physical address.
KPhysicalAddress phys_addr;
ASSERT(src_page_table.GetPhysicalAddressLocked(std::addressof(phys_addr), dst_address));
// Determine the current read size.
const size_t cur_size =
std::min<size_t>(last_address - dst_address + 1,
Common::AlignDown(GetInteger(dst_address) + PageSize, PageSize) -
GetInteger(dst_address));
// Read.
R_TRY(dst_page_table.WriteIoMemoryImpl(phys_addr, src, cur_size, state));
// Advance.
dst_address += cur_size;
src += cur_size;
}
R_SUCCEED();
}
Result KPageTableBase::LockForMapDeviceAddressSpace(bool* out_is_io, KProcessAddress address,
size_t size, KMemoryPermission perm,
bool is_aligned, bool check_heap) {
// Lightly validate the range before doing anything else.
const size_t num_pages = size / PageSize;
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the memory state.
const KMemoryState test_state =
(is_aligned ? KMemoryState::FlagCanAlignedDeviceMap : KMemoryState::FlagCanDeviceMap) |
(check_heap ? KMemoryState::FlagReferenceCounted : KMemoryState::None);
size_t num_allocator_blocks;
KMemoryState old_state;
R_TRY(this->CheckMemoryState(std::addressof(old_state), nullptr, nullptr,
std::addressof(num_allocator_blocks), address, size, test_state,
test_state, perm, perm,
KMemoryAttribute::IpcLocked | KMemoryAttribute::Locked,
KMemoryAttribute::None, KMemoryAttribute::DeviceShared));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Update the memory blocks.
m_memory_block_manager.UpdateLock(std::addressof(allocator), address, num_pages,
&KMemoryBlock::ShareToDevice, KMemoryPermission::None);
// Set whether the locked memory was io.
*out_is_io =
static_cast<Svc::MemoryState>(old_state & KMemoryState::Mask) == Svc::MemoryState::Io;
R_SUCCEED();
}
Result KPageTableBase::LockForUnmapDeviceAddressSpace(KProcessAddress address, size_t size,
bool check_heap) {
// Lightly validate the range before doing anything else.
const size_t num_pages = size / PageSize;
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the memory state.
const KMemoryState test_state =
KMemoryState::FlagCanDeviceMap |
(check_heap ? KMemoryState::FlagReferenceCounted : KMemoryState::None);
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryStateContiguous(
std::addressof(num_allocator_blocks), address, size, test_state, test_state,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::DeviceShared | KMemoryAttribute::Locked, KMemoryAttribute::DeviceShared));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Update the memory blocks.
const KMemoryBlockManager::MemoryBlockLockFunction lock_func =
m_enable_device_address_space_merge
? &KMemoryBlock::UpdateDeviceDisableMergeStateForShare
: &KMemoryBlock::UpdateDeviceDisableMergeStateForShareRight;
m_memory_block_manager.UpdateLock(std::addressof(allocator), address, num_pages, lock_func,
KMemoryPermission::None);
R_SUCCEED();
}
Result KPageTableBase::UnlockForDeviceAddressSpace(KProcessAddress address, size_t size) {
// Lightly validate the range before doing anything else.
const size_t num_pages = size / PageSize;
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the memory state.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryStateContiguous(
std::addressof(num_allocator_blocks), address, size, KMemoryState::FlagCanDeviceMap,
KMemoryState::FlagCanDeviceMap, KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::DeviceShared | KMemoryAttribute::Locked, KMemoryAttribute::DeviceShared));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Update the memory blocks.
m_memory_block_manager.UpdateLock(std::addressof(allocator), address, num_pages,
&KMemoryBlock::UnshareToDevice, KMemoryPermission::None);
R_SUCCEED();
}
Result KPageTableBase::UnlockForDeviceAddressSpacePartialMap(KProcessAddress address, size_t size) {
// Lightly validate the range before doing anything else.
const size_t num_pages = size / PageSize;
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check memory state.
size_t allocator_num_blocks = 0;
R_TRY(this->CheckMemoryStateContiguous(
std::addressof(allocator_num_blocks), address, size, KMemoryState::FlagCanDeviceMap,
KMemoryState::FlagCanDeviceMap, KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::DeviceShared | KMemoryAttribute::Locked, KMemoryAttribute::DeviceShared));
// Create an update allocator for the region.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, allocator_num_blocks);
R_TRY(allocator_result);
// Update the memory blocks.
m_memory_block_manager.UpdateLock(
std::addressof(allocator), address, num_pages,
m_enable_device_address_space_merge
? &KMemoryBlock::UpdateDeviceDisableMergeStateForUnshare
: &KMemoryBlock::UpdateDeviceDisableMergeStateForUnshareRight,
KMemoryPermission::None);
R_SUCCEED();
}
Result KPageTableBase::OpenMemoryRangeForMapDeviceAddressSpace(KPageTableBase::MemoryRange* out,
KProcessAddress address, size_t size,
KMemoryPermission perm,
bool is_aligned) {
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Get the range.
const KMemoryState test_state =
(is_aligned ? KMemoryState::FlagCanAlignedDeviceMap : KMemoryState::FlagCanDeviceMap);
R_TRY(this->GetContiguousMemoryRangeWithState(
out, address, size, test_state, test_state, perm, perm,
KMemoryAttribute::IpcLocked | KMemoryAttribute::Locked, KMemoryAttribute::None));
// We got the range, so open it.
out->Open();
R_SUCCEED();
}
Result KPageTableBase::OpenMemoryRangeForUnmapDeviceAddressSpace(MemoryRange* out,
KProcessAddress address,
size_t size) {
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Get the range.
R_TRY(this->GetContiguousMemoryRangeWithState(
out, address, size, KMemoryState::FlagCanDeviceMap, KMemoryState::FlagCanDeviceMap,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::DeviceShared | KMemoryAttribute::Locked, KMemoryAttribute::DeviceShared));
// We got the range, so open it.
out->Open();
R_SUCCEED();
}
Result KPageTableBase::LockForIpcUserBuffer(KPhysicalAddress* out, KProcessAddress address,
size_t size) {
R_RETURN(this->LockMemoryAndOpen(
nullptr, out, address, size, KMemoryState::FlagCanIpcUserBuffer,
KMemoryState::FlagCanIpcUserBuffer, KMemoryPermission::All,
KMemoryPermission::UserReadWrite, KMemoryAttribute::All, KMemoryAttribute::None,
static_cast<KMemoryPermission>(KMemoryPermission::NotMapped |
KMemoryPermission::KernelReadWrite),
KMemoryAttribute::Locked));
}
Result KPageTableBase::UnlockForIpcUserBuffer(KProcessAddress address, size_t size) {
R_RETURN(this->UnlockMemory(address, size, KMemoryState::FlagCanIpcUserBuffer,
KMemoryState::FlagCanIpcUserBuffer, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::All,
KMemoryAttribute::Locked, KMemoryPermission::UserReadWrite,
KMemoryAttribute::Locked, nullptr));
}
Result KPageTableBase::LockForTransferMemory(KPageGroup* out, KProcessAddress address, size_t size,
KMemoryPermission perm) {
R_RETURN(this->LockMemoryAndOpen(out, nullptr, address, size, KMemoryState::FlagCanTransfer,
KMemoryState::FlagCanTransfer, KMemoryPermission::All,
KMemoryPermission::UserReadWrite, KMemoryAttribute::All,
KMemoryAttribute::None, perm, KMemoryAttribute::Locked));
}
Result KPageTableBase::UnlockForTransferMemory(KProcessAddress address, size_t size,
const KPageGroup& pg) {
R_RETURN(this->UnlockMemory(address, size, KMemoryState::FlagCanTransfer,
KMemoryState::FlagCanTransfer, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::All,
KMemoryAttribute::Locked, KMemoryPermission::UserReadWrite,
KMemoryAttribute::Locked, std::addressof(pg)));
}
Result KPageTableBase::LockForCodeMemory(KPageGroup* out, KProcessAddress address, size_t size) {
R_RETURN(this->LockMemoryAndOpen(
out, nullptr, address, size, KMemoryState::FlagCanCodeMemory,
KMemoryState::FlagCanCodeMemory, KMemoryPermission::All, KMemoryPermission::UserReadWrite,
KMemoryAttribute::All, KMemoryAttribute::None,
static_cast<KMemoryPermission>(KMemoryPermission::NotMapped |
KMemoryPermission::KernelReadWrite),
KMemoryAttribute::Locked));
}
Result KPageTableBase::UnlockForCodeMemory(KProcessAddress address, size_t size,
const KPageGroup& pg) {
R_RETURN(this->UnlockMemory(address, size, KMemoryState::FlagCanCodeMemory,
KMemoryState::FlagCanCodeMemory, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::All,
KMemoryAttribute::Locked, KMemoryPermission::UserReadWrite,
KMemoryAttribute::Locked, std::addressof(pg)));
}
Result KPageTableBase::OpenMemoryRangeForProcessCacheOperation(MemoryRange* out,
KProcessAddress address,
size_t size) {
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Get the range.
R_TRY(this->GetContiguousMemoryRangeWithState(
out, address, size, KMemoryState::FlagReferenceCounted, KMemoryState::FlagReferenceCounted,
KMemoryPermission::UserRead, KMemoryPermission::UserRead, KMemoryAttribute::Uncached,
KMemoryAttribute::None));
// We got the range, so open it.
out->Open();
R_SUCCEED();
}
Result KPageTableBase::CopyMemoryFromLinearToUser(
KProcessAddress dst_addr, size_t size, KProcessAddress src_addr, KMemoryState src_state_mask,
KMemoryState src_state, KMemoryPermission src_test_perm, KMemoryAttribute src_attr_mask,
KMemoryAttribute src_attr) {
// Lightly validate the range before doing anything else.
R_UNLESS(this->Contains(src_addr, size), ResultInvalidCurrentMemory);
// Get the destination memory reference.
auto& dst_memory = GetCurrentMemory(m_kernel);
// Copy the memory.
{
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check memory state.
R_TRY(this->CheckMemoryStateContiguous(
src_addr, size, src_state_mask, src_state, src_test_perm, src_test_perm,
src_attr_mask | KMemoryAttribute::Uncached, src_attr));
auto& impl = this->GetImpl();
// Begin traversal.
TraversalContext context;
TraversalEntry next_entry;
bool traverse_valid =
impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), src_addr);
ASSERT(traverse_valid);
// Prepare tracking variables.
KPhysicalAddress cur_addr = next_entry.phys_addr;
size_t cur_size =
next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
size_t tot_size = cur_size;
auto PerformCopy = [&]() -> Result {
// Ensure the address is linear mapped.
R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
// Copy as much aligned data as we can.
if (cur_size >= sizeof(u32)) {
const size_t copy_size = Common::AlignDown(cur_size, sizeof(u32));
R_UNLESS(dst_memory.WriteBlock(dst_addr,
GetLinearMappedVirtualPointer(m_kernel, cur_addr),
copy_size),
ResultInvalidCurrentMemory);
dst_addr += copy_size;
cur_addr += copy_size;
cur_size -= copy_size;
}
// Copy remaining data.
if (cur_size > 0) {
R_UNLESS(dst_memory.WriteBlock(
dst_addr, GetLinearMappedVirtualPointer(m_kernel, cur_addr), cur_size),
ResultInvalidCurrentMemory);
}
R_SUCCEED();
};
// Iterate.
while (tot_size < size) {
// Continue the traversal.
traverse_valid =
impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
ASSERT(traverse_valid);
if (next_entry.phys_addr != (cur_addr + cur_size)) {
// Perform copy.
R_TRY(PerformCopy());
// Advance.
dst_addr += cur_size;
cur_addr = next_entry.phys_addr;
cur_size = next_entry.block_size;
} else {
cur_size += next_entry.block_size;
}
tot_size += next_entry.block_size;
}
// Ensure we use the right size for the last block.
if (tot_size > size) {
cur_size -= (tot_size - size);
}
// Perform copy for the last block.
R_TRY(PerformCopy());
}
R_SUCCEED();
}
Result KPageTableBase::CopyMemoryFromLinearToKernel(
void* buffer, size_t size, KProcessAddress src_addr, KMemoryState src_state_mask,
KMemoryState src_state, KMemoryPermission src_test_perm, KMemoryAttribute src_attr_mask,
KMemoryAttribute src_attr) {
// Lightly validate the range before doing anything else.
R_UNLESS(this->Contains(src_addr, size), ResultInvalidCurrentMemory);
// Copy the memory.
{
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check memory state.
R_TRY(this->CheckMemoryStateContiguous(
src_addr, size, src_state_mask, src_state, src_test_perm, src_test_perm,
src_attr_mask | KMemoryAttribute::Uncached, src_attr));
auto& impl = this->GetImpl();
// Begin traversal.
TraversalContext context;
TraversalEntry next_entry;
bool traverse_valid =
impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), src_addr);
ASSERT(traverse_valid);
// Prepare tracking variables.
KPhysicalAddress cur_addr = next_entry.phys_addr;
size_t cur_size =
next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
size_t tot_size = cur_size;
auto PerformCopy = [&]() -> Result {
// Ensure the address is linear mapped.
R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
// Copy the data.
std::memcpy(buffer, GetLinearMappedVirtualPointer(m_kernel, cur_addr), cur_size);
R_SUCCEED();
};
// Iterate.
while (tot_size < size) {
// Continue the traversal.
traverse_valid =
impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
ASSERT(traverse_valid);
if (next_entry.phys_addr != (cur_addr + cur_size)) {
// Perform copy.
R_TRY(PerformCopy());
// Advance.
buffer = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(buffer) + cur_size);
cur_addr = next_entry.phys_addr;
cur_size = next_entry.block_size;
} else {
cur_size += next_entry.block_size;
}
tot_size += next_entry.block_size;
}
// Ensure we use the right size for the last block.
if (tot_size > size) {
cur_size -= (tot_size - size);
}
// Perform copy for the last block.
R_TRY(PerformCopy());
}
R_SUCCEED();
}
Result KPageTableBase::CopyMemoryFromUserToLinear(
KProcessAddress dst_addr, size_t size, KMemoryState dst_state_mask, KMemoryState dst_state,
KMemoryPermission dst_test_perm, KMemoryAttribute dst_attr_mask, KMemoryAttribute dst_attr,
KProcessAddress src_addr) {
// Lightly validate the range before doing anything else.
R_UNLESS(this->Contains(dst_addr, size), ResultInvalidCurrentMemory);
// Get the source memory reference.
auto& src_memory = GetCurrentMemory(m_kernel);
// Copy the memory.
{
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check memory state.
R_TRY(this->CheckMemoryStateContiguous(
dst_addr, size, dst_state_mask, dst_state, dst_test_perm, dst_test_perm,
dst_attr_mask | KMemoryAttribute::Uncached, dst_attr));
auto& impl = this->GetImpl();
// Begin traversal.
TraversalContext context;
TraversalEntry next_entry;
bool traverse_valid =
impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), dst_addr);
ASSERT(traverse_valid);
// Prepare tracking variables.
KPhysicalAddress cur_addr = next_entry.phys_addr;
size_t cur_size =
next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
size_t tot_size = cur_size;
auto PerformCopy = [&]() -> Result {
// Ensure the address is linear mapped.
R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
// Copy as much aligned data as we can.
if (cur_size >= sizeof(u32)) {
const size_t copy_size = Common::AlignDown(cur_size, sizeof(u32));
R_UNLESS(src_memory.ReadBlock(src_addr,
GetLinearMappedVirtualPointer(m_kernel, cur_addr),
copy_size),
ResultInvalidCurrentMemory);
src_addr += copy_size;
cur_addr += copy_size;
cur_size -= copy_size;
}
// Copy remaining data.
if (cur_size > 0) {
R_UNLESS(src_memory.ReadBlock(
src_addr, GetLinearMappedVirtualPointer(m_kernel, cur_addr), cur_size),
ResultInvalidCurrentMemory);
}
R_SUCCEED();
};
// Iterate.
while (tot_size < size) {
// Continue the traversal.
traverse_valid =
impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
ASSERT(traverse_valid);
if (next_entry.phys_addr != (cur_addr + cur_size)) {
// Perform copy.
R_TRY(PerformCopy());
// Advance.
src_addr += cur_size;
cur_addr = next_entry.phys_addr;
cur_size = next_entry.block_size;
} else {
cur_size += next_entry.block_size;
}
tot_size += next_entry.block_size;
}
// Ensure we use the right size for the last block.
if (tot_size > size) {
cur_size -= (tot_size - size);
}
// Perform copy for the last block.
R_TRY(PerformCopy());
}
R_SUCCEED();
}
Result KPageTableBase::CopyMemoryFromKernelToLinear(KProcessAddress dst_addr, size_t size,
KMemoryState dst_state_mask,
KMemoryState dst_state,
KMemoryPermission dst_test_perm,
KMemoryAttribute dst_attr_mask,
KMemoryAttribute dst_attr, void* buffer) {
// Lightly validate the range before doing anything else.
R_UNLESS(this->Contains(dst_addr, size), ResultInvalidCurrentMemory);
// Copy the memory.
{
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check memory state.
R_TRY(this->CheckMemoryStateContiguous(
dst_addr, size, dst_state_mask, dst_state, dst_test_perm, dst_test_perm,
dst_attr_mask | KMemoryAttribute::Uncached, dst_attr));
auto& impl = this->GetImpl();
// Begin traversal.
TraversalContext context;
TraversalEntry next_entry;
bool traverse_valid =
impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), dst_addr);
ASSERT(traverse_valid);
// Prepare tracking variables.
KPhysicalAddress cur_addr = next_entry.phys_addr;
size_t cur_size =
next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
size_t tot_size = cur_size;
auto PerformCopy = [&]() -> Result {
// Ensure the address is linear mapped.
R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
// Copy the data.
std::memcpy(GetLinearMappedVirtualPointer(m_kernel, cur_addr), buffer, cur_size);
R_SUCCEED();
};
// Iterate.
while (tot_size < size) {
// Continue the traversal.
traverse_valid =
impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
ASSERT(traverse_valid);
if (next_entry.phys_addr != (cur_addr + cur_size)) {
// Perform copy.
R_TRY(PerformCopy());
// Advance.
buffer = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(buffer) + cur_size);
cur_addr = next_entry.phys_addr;
cur_size = next_entry.block_size;
} else {
cur_size += next_entry.block_size;
}
tot_size += next_entry.block_size;
}
// Ensure we use the right size for the last block.
if (tot_size > size) {
cur_size -= (tot_size - size);
}
// Perform copy for the last block.
R_TRY(PerformCopy());
}
R_SUCCEED();
}
Result KPageTableBase::CopyMemoryFromHeapToHeap(
KPageTableBase& dst_page_table, KProcessAddress dst_addr, size_t size,
KMemoryState dst_state_mask, KMemoryState dst_state, KMemoryPermission dst_test_perm,
KMemoryAttribute dst_attr_mask, KMemoryAttribute dst_attr, KProcessAddress src_addr,
KMemoryState src_state_mask, KMemoryState src_state, KMemoryPermission src_test_perm,
KMemoryAttribute src_attr_mask, KMemoryAttribute src_attr) {
// For convenience, alias this.
KPageTableBase& src_page_table = *this;
// Lightly validate the ranges before doing anything else.
R_UNLESS(src_page_table.Contains(src_addr, size), ResultInvalidCurrentMemory);
R_UNLESS(dst_page_table.Contains(dst_addr, size), ResultInvalidCurrentMemory);
// Copy the memory.
{
// Acquire the table locks.
KScopedLightLockPair lk(src_page_table.m_general_lock, dst_page_table.m_general_lock);
// Check memory state.
R_TRY(src_page_table.CheckMemoryStateContiguous(
src_addr, size, src_state_mask, src_state, src_test_perm, src_test_perm,
src_attr_mask | KMemoryAttribute::Uncached, src_attr));
R_TRY(dst_page_table.CheckMemoryStateContiguous(
dst_addr, size, dst_state_mask, dst_state, dst_test_perm, dst_test_perm,
dst_attr_mask | KMemoryAttribute::Uncached, dst_attr));
// Get implementations.
auto& src_impl = src_page_table.GetImpl();
auto& dst_impl = dst_page_table.GetImpl();
// Prepare for traversal.
TraversalContext src_context;
TraversalContext dst_context;
TraversalEntry src_next_entry;
TraversalEntry dst_next_entry;
bool traverse_valid;
// Begin traversal.
traverse_valid = src_impl.BeginTraversal(std::addressof(src_next_entry),
std::addressof(src_context), src_addr);
ASSERT(traverse_valid);
traverse_valid = dst_impl.BeginTraversal(std::addressof(dst_next_entry),
std::addressof(dst_context), dst_addr);
ASSERT(traverse_valid);
// Prepare tracking variables.
KPhysicalAddress cur_src_block_addr = src_next_entry.phys_addr;
KPhysicalAddress cur_dst_block_addr = dst_next_entry.phys_addr;
size_t cur_src_size = src_next_entry.block_size -
(GetInteger(cur_src_block_addr) & (src_next_entry.block_size - 1));
size_t cur_dst_size = dst_next_entry.block_size -
(GetInteger(cur_dst_block_addr) & (dst_next_entry.block_size - 1));
// Adjust the initial block sizes.
src_next_entry.block_size = cur_src_size;
dst_next_entry.block_size = cur_dst_size;
// Before we get any crazier, succeed if there's nothing to do.
R_SUCCEED_IF(size == 0);
// We're going to manage dual traversal via an offset against the total size.
KPhysicalAddress cur_src_addr = cur_src_block_addr;
KPhysicalAddress cur_dst_addr = cur_dst_block_addr;
size_t cur_min_size = std::min<size_t>(cur_src_size, cur_dst_size);
// Iterate.
size_t ofs = 0;
while (ofs < size) {
// Determine how much we can copy this iteration.
const size_t cur_copy_size = std::min<size_t>(cur_min_size, size - ofs);
// If we need to advance the traversals, do so.
bool updated_src = false, updated_dst = false, skip_copy = false;
if (ofs + cur_copy_size != size) {
if (cur_src_addr + cur_min_size == cur_src_block_addr + cur_src_size) {
// Continue the src traversal.
traverse_valid = src_impl.ContinueTraversal(std::addressof(src_next_entry),
std::addressof(src_context));
ASSERT(traverse_valid);
// Update source.
updated_src = cur_src_addr + cur_min_size != src_next_entry.phys_addr;
}
if (cur_dst_addr + cur_min_size ==
dst_next_entry.phys_addr + dst_next_entry.block_size) {
// Continue the dst traversal.
traverse_valid = dst_impl.ContinueTraversal(std::addressof(dst_next_entry),
std::addressof(dst_context));
ASSERT(traverse_valid);
// Update destination.
updated_dst = cur_dst_addr + cur_min_size != dst_next_entry.phys_addr;
}
// If we didn't update either of source/destination, skip the copy this iteration.
if (!updated_src && !updated_dst) {
skip_copy = true;
// Update the source block address.
cur_src_block_addr = src_next_entry.phys_addr;
}
}
// Do the copy, unless we're skipping it.
if (!skip_copy) {
// We need both ends of the copy to be heap blocks.
R_UNLESS(IsHeapPhysicalAddress(cur_src_addr), ResultInvalidCurrentMemory);
R_UNLESS(IsHeapPhysicalAddress(cur_dst_addr), ResultInvalidCurrentMemory);
// Copy the data.
std::memcpy(GetHeapVirtualPointer(m_kernel, cur_dst_addr),
GetHeapVirtualPointer(m_kernel, cur_src_addr), cur_copy_size);
// Update.
cur_src_block_addr = src_next_entry.phys_addr;
cur_src_addr = updated_src ? cur_src_block_addr : cur_src_addr + cur_copy_size;
cur_dst_block_addr = dst_next_entry.phys_addr;
cur_dst_addr = updated_dst ? cur_dst_block_addr : cur_dst_addr + cur_copy_size;
// Advance offset.
ofs += cur_copy_size;
}
// Update min size.
cur_src_size = src_next_entry.block_size;
cur_dst_size = dst_next_entry.block_size;
cur_min_size = std::min<size_t>(cur_src_block_addr - cur_src_addr + cur_src_size,
cur_dst_block_addr - cur_dst_addr + cur_dst_size);
}
}
R_SUCCEED();
}
Result KPageTableBase::CopyMemoryFromHeapToHeapWithoutCheckDestination(
KPageTableBase& dst_page_table, KProcessAddress dst_addr, size_t size,
KMemoryState dst_state_mask, KMemoryState dst_state, KMemoryPermission dst_test_perm,
KMemoryAttribute dst_attr_mask, KMemoryAttribute dst_attr, KProcessAddress src_addr,
KMemoryState src_state_mask, KMemoryState src_state, KMemoryPermission src_test_perm,
KMemoryAttribute src_attr_mask, KMemoryAttribute src_attr) {
// For convenience, alias this.
KPageTableBase& src_page_table = *this;
// Lightly validate the ranges before doing anything else.
R_UNLESS(src_page_table.Contains(src_addr, size), ResultInvalidCurrentMemory);
R_UNLESS(dst_page_table.Contains(dst_addr, size), ResultInvalidCurrentMemory);
// Copy the memory.
{
// Acquire the table locks.
KScopedLightLockPair lk(src_page_table.m_general_lock, dst_page_table.m_general_lock);
// Check memory state for source.
R_TRY(src_page_table.CheckMemoryStateContiguous(
src_addr, size, src_state_mask, src_state, src_test_perm, src_test_perm,
src_attr_mask | KMemoryAttribute::Uncached, src_attr));
// Destination state is intentionally unchecked.
// Get implementations.
auto& src_impl = src_page_table.GetImpl();
auto& dst_impl = dst_page_table.GetImpl();
// Prepare for traversal.
TraversalContext src_context;
TraversalContext dst_context;
TraversalEntry src_next_entry;
TraversalEntry dst_next_entry;
bool traverse_valid;
// Begin traversal.
traverse_valid = src_impl.BeginTraversal(std::addressof(src_next_entry),
std::addressof(src_context), src_addr);
ASSERT(traverse_valid);
traverse_valid = dst_impl.BeginTraversal(std::addressof(dst_next_entry),
std::addressof(dst_context), dst_addr);
ASSERT(traverse_valid);
// Prepare tracking variables.
KPhysicalAddress cur_src_block_addr = src_next_entry.phys_addr;
KPhysicalAddress cur_dst_block_addr = dst_next_entry.phys_addr;
size_t cur_src_size = src_next_entry.block_size -
(GetInteger(cur_src_block_addr) & (src_next_entry.block_size - 1));
size_t cur_dst_size = dst_next_entry.block_size -
(GetInteger(cur_dst_block_addr) & (dst_next_entry.block_size - 1));
// Adjust the initial block sizes.
src_next_entry.block_size = cur_src_size;
dst_next_entry.block_size = cur_dst_size;
// Before we get any crazier, succeed if there's nothing to do.
R_SUCCEED_IF(size == 0);
// We're going to manage dual traversal via an offset against the total size.
KPhysicalAddress cur_src_addr = cur_src_block_addr;
KPhysicalAddress cur_dst_addr = cur_dst_block_addr;
size_t cur_min_size = std::min<size_t>(cur_src_size, cur_dst_size);
// Iterate.
size_t ofs = 0;
while (ofs < size) {
// Determine how much we can copy this iteration.
const size_t cur_copy_size = std::min<size_t>(cur_min_size, size - ofs);
// If we need to advance the traversals, do so.
bool updated_src = false, updated_dst = false, skip_copy = false;
if (ofs + cur_copy_size != size) {
if (cur_src_addr + cur_min_size == cur_src_block_addr + cur_src_size) {
// Continue the src traversal.
traverse_valid = src_impl.ContinueTraversal(std::addressof(src_next_entry),
std::addressof(src_context));
ASSERT(traverse_valid);
// Update source.
updated_src = cur_src_addr + cur_min_size != src_next_entry.phys_addr;
}
if (cur_dst_addr + cur_min_size ==
dst_next_entry.phys_addr + dst_next_entry.block_size) {
// Continue the dst traversal.
traverse_valid = dst_impl.ContinueTraversal(std::addressof(dst_next_entry),
std::addressof(dst_context));
ASSERT(traverse_valid);
// Update destination.
updated_dst = cur_dst_addr + cur_min_size != dst_next_entry.phys_addr;
}
// If we didn't update either of source/destination, skip the copy this iteration.
if (!updated_src && !updated_dst) {
skip_copy = true;
// Update the source block address.
cur_src_block_addr = src_next_entry.phys_addr;
}
}
// Do the copy, unless we're skipping it.
if (!skip_copy) {
// We need both ends of the copy to be heap blocks.
R_UNLESS(IsHeapPhysicalAddress(cur_src_addr), ResultInvalidCurrentMemory);
R_UNLESS(IsHeapPhysicalAddress(cur_dst_addr), ResultInvalidCurrentMemory);
// Copy the data.
std::memcpy(GetHeapVirtualPointer(m_kernel, cur_dst_addr),
GetHeapVirtualPointer(m_kernel, cur_src_addr), cur_copy_size);
// Update.
cur_src_block_addr = src_next_entry.phys_addr;
cur_src_addr = updated_src ? cur_src_block_addr : cur_src_addr + cur_copy_size;
cur_dst_block_addr = dst_next_entry.phys_addr;
cur_dst_addr = updated_dst ? cur_dst_block_addr : cur_dst_addr + cur_copy_size;
// Advance offset.
ofs += cur_copy_size;
}
// Update min size.
cur_src_size = src_next_entry.block_size;
cur_dst_size = dst_next_entry.block_size;
cur_min_size = std::min<size_t>(cur_src_block_addr - cur_src_addr + cur_src_size,
cur_dst_block_addr - cur_dst_addr + cur_dst_size);
}
}
R_SUCCEED();
}
Result KPageTableBase::SetupForIpcClient(PageLinkedList* page_list, size_t* out_blocks_needed,
KProcessAddress address, size_t size,
KMemoryPermission test_perm, KMemoryState dst_state) {
// Validate pre-conditions.
ASSERT(this->IsLockedByCurrentThread());
ASSERT(test_perm == KMemoryPermission::UserReadWrite ||
test_perm == KMemoryPermission::UserRead);
// Check that the address is in range.
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Get the source permission.
const auto src_perm = static_cast<KMemoryPermission>(
(test_perm == KMemoryPermission::UserReadWrite)
? KMemoryPermission::KernelReadWrite | KMemoryPermission::NotMapped
: KMemoryPermission::UserRead);
// Get aligned extents.
const KProcessAddress aligned_src_start = Common::AlignDown(GetInteger(address), PageSize);
const KProcessAddress aligned_src_end = Common::AlignUp(GetInteger(address) + size, PageSize);
const KProcessAddress mapping_src_start = Common::AlignUp(GetInteger(address), PageSize);
const KProcessAddress mapping_src_end = Common::AlignDown(GetInteger(address) + size, PageSize);
const auto aligned_src_last = GetInteger(aligned_src_end) - 1;
const auto mapping_src_last = GetInteger(mapping_src_end) - 1;
// Get the test state and attribute mask.
KMemoryState test_state;
KMemoryAttribute test_attr_mask;
switch (dst_state) {
case KMemoryState::Ipc:
test_state = KMemoryState::FlagCanUseIpc;
test_attr_mask =
KMemoryAttribute::Uncached | KMemoryAttribute::DeviceShared | KMemoryAttribute::Locked;
break;
case KMemoryState::NonSecureIpc:
test_state = KMemoryState::FlagCanUseNonSecureIpc;
test_attr_mask = KMemoryAttribute::Uncached | KMemoryAttribute::Locked;
break;
case KMemoryState::NonDeviceIpc:
test_state = KMemoryState::FlagCanUseNonDeviceIpc;
test_attr_mask = KMemoryAttribute::Uncached | KMemoryAttribute::Locked;
break;
default:
R_THROW(ResultInvalidCombination);
}
// Ensure that on failure, we roll back appropriately.
size_t mapped_size = 0;
ON_RESULT_FAILURE {
if (mapped_size > 0) {
this->CleanupForIpcClientOnServerSetupFailure(page_list, mapping_src_start, mapped_size,
src_perm);
}
};
size_t blocks_needed = 0;
// Iterate, mapping as needed.
KMemoryBlockManager::const_iterator it = m_memory_block_manager.FindIterator(aligned_src_start);
while (true) {
const KMemoryInfo info = it->GetMemoryInfo();
// Validate the current block.
R_TRY(this->CheckMemoryState(info, test_state, test_state, test_perm, test_perm,
test_attr_mask, KMemoryAttribute::None));
if (mapping_src_start < mapping_src_end &&
GetInteger(mapping_src_start) < info.GetEndAddress() &&
info.GetAddress() < GetInteger(mapping_src_end)) {
const auto cur_start = info.GetAddress() >= GetInteger(mapping_src_start)
? info.GetAddress()
: GetInteger(mapping_src_start);
const auto cur_end = mapping_src_last >= info.GetLastAddress()
? info.GetEndAddress()
: GetInteger(mapping_src_end);
const size_t cur_size = cur_end - cur_start;
if (info.GetAddress() < GetInteger(mapping_src_start)) {
++blocks_needed;
}
if (mapping_src_last < info.GetLastAddress()) {
++blocks_needed;
}
// Set the permissions on the block, if we need to.
if ((info.GetPermission() & KMemoryPermission::IpcLockChangeMask) != src_perm) {
const DisableMergeAttribute head_body_attr =
(GetInteger(mapping_src_start) >= info.GetAddress())
? DisableMergeAttribute::DisableHeadAndBody
: DisableMergeAttribute::None;
const DisableMergeAttribute tail_attr = (cur_end == GetInteger(mapping_src_end))
? DisableMergeAttribute::DisableTail
: DisableMergeAttribute::None;
const KPageProperties properties = {
src_perm, false, false,
static_cast<DisableMergeAttribute>(head_body_attr | tail_attr)};
R_TRY(this->Operate(page_list, cur_start, cur_size / PageSize, 0, false, properties,
OperationType::ChangePermissions, false));
}
// Note that we mapped this part.
mapped_size += cur_size;
}
// If the block is at the end, we're done.
if (aligned_src_last <= info.GetLastAddress()) {
break;
}
// Advance.
++it;
ASSERT(it != m_memory_block_manager.end());
}
if (out_blocks_needed != nullptr) {
ASSERT(blocks_needed <= KMemoryBlockManagerUpdateAllocator::MaxBlocks);
*out_blocks_needed = blocks_needed;
}
R_SUCCEED();
}
Result KPageTableBase::SetupForIpcServer(KProcessAddress* out_addr, size_t size,
KProcessAddress src_addr, KMemoryPermission test_perm,
KMemoryState dst_state, KPageTableBase& src_page_table,
bool send) {
ASSERT(this->IsLockedByCurrentThread());
ASSERT(src_page_table.IsLockedByCurrentThread());
// Check that we can theoretically map.
const KProcessAddress region_start = m_alias_region_start;
const size_t region_size = m_alias_region_end - m_alias_region_start;
R_UNLESS(size < region_size, ResultOutOfAddressSpace);
// Get aligned source extents.
const KProcessAddress src_start = src_addr;
const KProcessAddress src_end = src_addr + size;
const KProcessAddress aligned_src_start = Common::AlignDown(GetInteger(src_start), PageSize);
const KProcessAddress aligned_src_end = Common::AlignUp(GetInteger(src_start) + size, PageSize);
const KProcessAddress mapping_src_start = Common::AlignUp(GetInteger(src_start), PageSize);
const KProcessAddress mapping_src_end =
Common::AlignDown(GetInteger(src_start) + size, PageSize);
const size_t aligned_src_size = aligned_src_end - aligned_src_start;
const size_t mapping_src_size =
(mapping_src_start < mapping_src_end) ? (mapping_src_end - mapping_src_start) : 0;
// Select a random address to map at.
KProcessAddress dst_addr = 0;
{
const size_t alignment = 4_KiB;
const size_t offset = GetInteger(aligned_src_start) & (alignment - 1);
dst_addr =
this->FindFreeArea(region_start, region_size / PageSize, aligned_src_size / PageSize,
alignment, offset, this->GetNumGuardPages());
R_UNLESS(dst_addr != 0, ResultOutOfAddressSpace);
}
// Check that we can perform the operation we're about to perform.
ASSERT(this->CanContain(dst_addr, aligned_src_size, dst_state));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Reserve space for any partial pages we allocate.
const size_t unmapped_size = aligned_src_size - mapping_src_size;
KScopedResourceReservation memory_reservation(
m_resource_limit, Svc::LimitableResource::PhysicalMemoryMax, unmapped_size);
R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
// Ensure that we manage page references correctly.
KPhysicalAddress start_partial_page = 0;
KPhysicalAddress end_partial_page = 0;
KProcessAddress cur_mapped_addr = dst_addr;
// If the partial pages are mapped, an extra reference will have been opened. Otherwise, they'll
// free on scope exit.
SCOPE_EXIT {
if (start_partial_page != 0) {
m_kernel.MemoryManager().Close(start_partial_page, 1);
}
if (end_partial_page != 0) {
m_kernel.MemoryManager().Close(end_partial_page, 1);
}
};
ON_RESULT_FAILURE {
if (cur_mapped_addr != dst_addr) {
const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
DisableMergeAttribute::None};
R_ASSERT(this->Operate(updater.GetPageList(), dst_addr,
(cur_mapped_addr - dst_addr) / PageSize, 0, false,
unmap_properties, OperationType::Unmap, true));
}
};
// Allocate the start page as needed.
if (aligned_src_start < mapping_src_start) {
start_partial_page =
m_kernel.MemoryManager().AllocateAndOpenContinuous(1, 1, m_allocate_option);
R_UNLESS(start_partial_page != 0, ResultOutOfMemory);
}
// Allocate the end page as needed.
if (mapping_src_end < aligned_src_end &&
(aligned_src_start < mapping_src_end || aligned_src_start == mapping_src_start)) {
end_partial_page =
m_kernel.MemoryManager().AllocateAndOpenContinuous(1, 1, m_allocate_option);
R_UNLESS(end_partial_page != 0, ResultOutOfMemory);
}
// Get the implementation.
auto& src_impl = src_page_table.GetImpl();
// Get the fill value for partial pages.
const auto fill_val = m_ipc_fill_value;
// Begin traversal.
TraversalContext context;
TraversalEntry next_entry;
bool traverse_valid = src_impl.BeginTraversal(std::addressof(next_entry),
std::addressof(context), aligned_src_start);
ASSERT(traverse_valid);
// Prepare tracking variables.
KPhysicalAddress cur_block_addr = next_entry.phys_addr;
size_t cur_block_size =
next_entry.block_size - (GetInteger(cur_block_addr) & (next_entry.block_size - 1));
size_t tot_block_size = cur_block_size;
// Map the start page, if we have one.
if (start_partial_page != 0) {
// Ensure the page holds correct data.
u8* const start_partial_virt = GetHeapVirtualPointer(m_kernel, start_partial_page);
if (send) {
const size_t partial_offset = src_start - aligned_src_start;
size_t copy_size, clear_size;
if (src_end < mapping_src_start) {
copy_size = size;
clear_size = mapping_src_start - src_end;
} else {
copy_size = mapping_src_start - src_start;
clear_size = 0;
}
std::memset(start_partial_virt, fill_val, partial_offset);
std::memcpy(start_partial_virt + partial_offset,
GetHeapVirtualPointer(m_kernel, cur_block_addr) + partial_offset,
copy_size);
if (clear_size > 0) {
std::memset(start_partial_virt + partial_offset + copy_size, fill_val, clear_size);
}
} else {
std::memset(start_partial_virt, fill_val, PageSize);
}
// Map the page.
const KPageProperties start_map_properties = {test_perm, false, false,
DisableMergeAttribute::DisableHead};
R_TRY(this->Operate(updater.GetPageList(), cur_mapped_addr, 1, start_partial_page, true,
start_map_properties, OperationType::Map, false));
// Update tracking extents.
cur_mapped_addr += PageSize;
cur_block_addr += PageSize;
cur_block_size -= PageSize;
// If the block's size was one page, we may need to continue traversal.
if (cur_block_size == 0 && aligned_src_size > PageSize) {
traverse_valid =
src_impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
ASSERT(traverse_valid);
cur_block_addr = next_entry.phys_addr;
cur_block_size = next_entry.block_size;
tot_block_size += next_entry.block_size;
}
}
// Map the remaining pages.
while (aligned_src_start + tot_block_size < mapping_src_end) {
// Continue the traversal.
traverse_valid =
src_impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
ASSERT(traverse_valid);
// Process the block.
if (next_entry.phys_addr != cur_block_addr + cur_block_size) {
// Map the block we've been processing so far.
const KPageProperties map_properties = {test_perm, false, false,
(cur_mapped_addr == dst_addr)
? DisableMergeAttribute::DisableHead
: DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), cur_mapped_addr, cur_block_size / PageSize,
cur_block_addr, true, map_properties, OperationType::Map, false));
// Update tracking extents.
cur_mapped_addr += cur_block_size;
cur_block_addr = next_entry.phys_addr;
cur_block_size = next_entry.block_size;
} else {
cur_block_size += next_entry.block_size;
}
tot_block_size += next_entry.block_size;
}
// Handle the last direct-mapped page.
if (const KProcessAddress mapped_block_end =
aligned_src_start + tot_block_size - cur_block_size;
mapped_block_end < mapping_src_end) {
const size_t last_block_size = mapping_src_end - mapped_block_end;
// Map the last block.
const KPageProperties map_properties = {test_perm, false, false,
(cur_mapped_addr == dst_addr)
? DisableMergeAttribute::DisableHead
: DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), cur_mapped_addr, last_block_size / PageSize,
cur_block_addr, true, map_properties, OperationType::Map, false));
// Update tracking extents.
cur_mapped_addr += last_block_size;
cur_block_addr += last_block_size;
if (mapped_block_end + cur_block_size < aligned_src_end &&
cur_block_size == last_block_size) {
traverse_valid =
src_impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
ASSERT(traverse_valid);
cur_block_addr = next_entry.phys_addr;
}
}
// Map the end page, if we have one.
if (end_partial_page != 0) {
// Ensure the page holds correct data.
u8* const end_partial_virt = GetHeapVirtualPointer(m_kernel, end_partial_page);
if (send) {
const size_t copy_size = src_end - mapping_src_end;
std::memcpy(end_partial_virt, GetHeapVirtualPointer(m_kernel, cur_block_addr),
copy_size);
std::memset(end_partial_virt + copy_size, fill_val, PageSize - copy_size);
} else {
std::memset(end_partial_virt, fill_val, PageSize);
}
// Map the page.
const KPageProperties map_properties = {test_perm, false, false,
(cur_mapped_addr == dst_addr)
? DisableMergeAttribute::DisableHead
: DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), cur_mapped_addr, 1, end_partial_page, true,
map_properties, OperationType::Map, false));
}
// Update memory blocks to reflect our changes
m_memory_block_manager.Update(std::addressof(allocator), dst_addr, aligned_src_size / PageSize,
dst_state, test_perm, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
// Set the output address.
*out_addr = dst_addr + (src_start - aligned_src_start);
// We succeeded.
memory_reservation.Commit();
R_SUCCEED();
}
Result KPageTableBase::SetupForIpc(KProcessAddress* out_dst_addr, size_t size,
KProcessAddress src_addr, KPageTableBase& src_page_table,
KMemoryPermission test_perm, KMemoryState dst_state, bool send) {
// For convenience, alias this.
KPageTableBase& dst_page_table = *this;
// Acquire the table locks.
KScopedLightLockPair lk(src_page_table.m_general_lock, dst_page_table.m_general_lock);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(std::addressof(src_page_table));
// Perform client setup.
size_t num_allocator_blocks;
R_TRY(src_page_table.SetupForIpcClient(updater.GetPageList(),
std::addressof(num_allocator_blocks), src_addr, size,
test_perm, dst_state));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
src_page_table.m_memory_block_slab_manager,
num_allocator_blocks);
R_TRY(allocator_result);
// Get the mapped extents.
const KProcessAddress src_map_start = Common::AlignUp(GetInteger(src_addr), PageSize);
const KProcessAddress src_map_end = Common::AlignDown(GetInteger(src_addr) + size, PageSize);
const size_t src_map_size = src_map_end - src_map_start;
// Ensure that we clean up appropriately if we fail after this.
const auto src_perm = static_cast<KMemoryPermission>(
(test_perm == KMemoryPermission::UserReadWrite)
? KMemoryPermission::KernelReadWrite | KMemoryPermission::NotMapped
: KMemoryPermission::UserRead);
ON_RESULT_FAILURE {
if (src_map_end > src_map_start) {
src_page_table.CleanupForIpcClientOnServerSetupFailure(
updater.GetPageList(), src_map_start, src_map_size, src_perm);
}
};
// Perform server setup.
R_TRY(dst_page_table.SetupForIpcServer(out_dst_addr, size, src_addr, test_perm, dst_state,
src_page_table, send));
// If anything was mapped, ipc-lock the pages.
if (src_map_start < src_map_end) {
// Get the source permission.
src_page_table.m_memory_block_manager.UpdateLock(std::addressof(allocator), src_map_start,
(src_map_end - src_map_start) / PageSize,
&KMemoryBlock::LockForIpc, src_perm);
}
R_SUCCEED();
}
Result KPageTableBase::CleanupForIpcServer(KProcessAddress address, size_t size,
KMemoryState dst_state) {
// Validate the address.
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Validate the memory state.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
KMemoryState::All, dst_state, KMemoryPermission::UserRead,
KMemoryPermission::UserRead, KMemoryAttribute::All,
KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Get aligned extents.
const KProcessAddress aligned_start = Common::AlignDown(GetInteger(address), PageSize);
const KProcessAddress aligned_end = Common::AlignUp(GetInteger(address) + size, PageSize);
const size_t aligned_size = aligned_end - aligned_start;
const size_t aligned_num_pages = aligned_size / PageSize;
// Unmap the pages.
const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), aligned_start, aligned_num_pages, 0, false,
unmap_properties, OperationType::Unmap, false));
// Update memory blocks.
m_memory_block_manager.Update(std::addressof(allocator), aligned_start, aligned_num_pages,
KMemoryState::None, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal);
// Release from the resource limit as relevant.
const KProcessAddress mapping_start = Common::AlignUp(GetInteger(address), PageSize);
const KProcessAddress mapping_end = Common::AlignDown(GetInteger(address) + size, PageSize);
const size_t mapping_size = (mapping_start < mapping_end) ? mapping_end - mapping_start : 0;
m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax,
aligned_size - mapping_size);
R_SUCCEED();
}
Result KPageTableBase::CleanupForIpcClient(KProcessAddress address, size_t size,
KMemoryState dst_state) {
// Validate the address.
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Get aligned source extents.
const KProcessAddress mapping_start = Common::AlignUp(GetInteger(address), PageSize);
const KProcessAddress mapping_end = Common::AlignDown(GetInteger(address) + size, PageSize);
const KProcessAddress mapping_last = mapping_end - 1;
const size_t mapping_size = (mapping_start < mapping_end) ? (mapping_end - mapping_start) : 0;
// If nothing was mapped, we're actually done immediately.
R_SUCCEED_IF(mapping_size == 0);
// Get the test state and attribute mask.
KMemoryState test_state;
KMemoryAttribute test_attr_mask;
switch (dst_state) {
case KMemoryState::Ipc:
test_state = KMemoryState::FlagCanUseIpc;
test_attr_mask =
KMemoryAttribute::Uncached | KMemoryAttribute::DeviceShared | KMemoryAttribute::Locked;
break;
case KMemoryState::NonSecureIpc:
test_state = KMemoryState::FlagCanUseNonSecureIpc;
test_attr_mask = KMemoryAttribute::Uncached | KMemoryAttribute::Locked;
break;
case KMemoryState::NonDeviceIpc:
test_state = KMemoryState::FlagCanUseNonDeviceIpc;
test_attr_mask = KMemoryAttribute::Uncached | KMemoryAttribute::Locked;
break;
default:
R_THROW(ResultInvalidCombination);
}
// Lock the table.
// NOTE: Nintendo does this *after* creating the updater below, but this does not follow
// convention elsewhere in KPageTableBase.
KScopedLightLock lk(m_general_lock);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Ensure that on failure, we roll back appropriately.
size_t mapped_size = 0;
ON_RESULT_FAILURE {
if (mapped_size > 0) {
// Determine where the mapping ends.
const auto mapped_end = GetInteger(mapping_start) + mapped_size;
const auto mapped_last = mapped_end - 1;
// Get current and next iterators.
KMemoryBlockManager::const_iterator start_it =
m_memory_block_manager.FindIterator(mapping_start);
KMemoryBlockManager::const_iterator next_it = start_it;
++next_it;
// Get the current block info.
KMemoryInfo cur_info = start_it->GetMemoryInfo();
// Create tracking variables.
KProcessAddress cur_address = cur_info.GetAddress();
size_t cur_size = cur_info.GetSize();
bool cur_perm_eq = cur_info.GetPermission() == cur_info.GetOriginalPermission();
bool cur_needs_set_perm = !cur_perm_eq && cur_info.GetIpcLockCount() == 1;
bool first = cur_info.GetIpcDisableMergeCount() == 1 &&
False(cur_info.GetDisableMergeAttribute() &
KMemoryBlockDisableMergeAttribute::Locked);
while ((GetInteger(cur_address) + cur_size - 1) < mapped_last) {
// Check that we have a next block.
ASSERT(next_it != m_memory_block_manager.end());
// Get the next info.
const KMemoryInfo next_info = next_it->GetMemoryInfo();
// Check if we can consolidate the next block's permission set with the current one.
const bool next_perm_eq =
next_info.GetPermission() == next_info.GetOriginalPermission();
const bool next_needs_set_perm = !next_perm_eq && next_info.GetIpcLockCount() == 1;
if (cur_perm_eq == next_perm_eq && cur_needs_set_perm == next_needs_set_perm &&
cur_info.GetOriginalPermission() == next_info.GetOriginalPermission()) {
// We can consolidate the reprotection for the current and next block into a
// single call.
cur_size += next_info.GetSize();
} else {
// We have to operate on the current block.
if ((cur_needs_set_perm || first) && !cur_perm_eq) {
const KPageProperties properties = {
cur_info.GetPermission(), false, false,
first ? DisableMergeAttribute::EnableAndMergeHeadBodyTail
: DisableMergeAttribute::None};
R_ASSERT(this->Operate(updater.GetPageList(), cur_address,
cur_size / PageSize, 0, false, properties,
OperationType::ChangePermissions, true));
}
// Advance.
cur_address = next_info.GetAddress();
cur_size = next_info.GetSize();
first = false;
}
// Advance.
cur_info = next_info;
cur_perm_eq = next_perm_eq;
cur_needs_set_perm = next_needs_set_perm;
++next_it;
}
// Process the last block.
if ((first || cur_needs_set_perm) && !cur_perm_eq) {
const KPageProperties properties = {
cur_info.GetPermission(), false, false,
first ? DisableMergeAttribute::EnableAndMergeHeadBodyTail
: DisableMergeAttribute::None};
R_ASSERT(this->Operate(updater.GetPageList(), cur_address, cur_size / PageSize, 0,
false, properties, OperationType::ChangePermissions, true));
}
}
};
// Iterate, reprotecting as needed.
{
// Get current and next iterators.
KMemoryBlockManager::const_iterator start_it =
m_memory_block_manager.FindIterator(mapping_start);
KMemoryBlockManager::const_iterator next_it = start_it;
++next_it;
// Validate the current block.
KMemoryInfo cur_info = start_it->GetMemoryInfo();
R_ASSERT(this->CheckMemoryState(
cur_info, test_state, test_state, KMemoryPermission::None, KMemoryPermission::None,
test_attr_mask | KMemoryAttribute::IpcLocked, KMemoryAttribute::IpcLocked));
// Create tracking variables.
KProcessAddress cur_address = cur_info.GetAddress();
size_t cur_size = cur_info.GetSize();
bool cur_perm_eq = cur_info.GetPermission() == cur_info.GetOriginalPermission();
bool cur_needs_set_perm = !cur_perm_eq && cur_info.GetIpcLockCount() == 1;
bool first =
cur_info.GetIpcDisableMergeCount() == 1 &&
False(cur_info.GetDisableMergeAttribute() & KMemoryBlockDisableMergeAttribute::Locked);
while ((cur_address + cur_size - 1) < mapping_last) {
// Check that we have a next block.
ASSERT(next_it != m_memory_block_manager.end());
// Get the next info.
const KMemoryInfo next_info = next_it->GetMemoryInfo();
// Validate the next block.
R_ASSERT(this->CheckMemoryState(
next_info, test_state, test_state, KMemoryPermission::None, KMemoryPermission::None,
test_attr_mask | KMemoryAttribute::IpcLocked, KMemoryAttribute::IpcLocked));
// Check if we can consolidate the next block's permission set with the current one.
const bool next_perm_eq =
next_info.GetPermission() == next_info.GetOriginalPermission();
const bool next_needs_set_perm = !next_perm_eq && next_info.GetIpcLockCount() == 1;
if (cur_perm_eq == next_perm_eq && cur_needs_set_perm == next_needs_set_perm &&
cur_info.GetOriginalPermission() == next_info.GetOriginalPermission()) {
// We can consolidate the reprotection for the current and next block into a single
// call.
cur_size += next_info.GetSize();
} else {
// We have to operate on the current block.
if ((cur_needs_set_perm || first) && !cur_perm_eq) {
const KPageProperties properties = {
cur_needs_set_perm ? cur_info.GetOriginalPermission()
: cur_info.GetPermission(),
false, false,
first ? DisableMergeAttribute::EnableHeadAndBody
: DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), cur_address, cur_size / PageSize, 0,
false, properties, OperationType::ChangePermissions,
false));
}
// Mark that we mapped the block.
mapped_size += cur_size;
// Advance.
cur_address = next_info.GetAddress();
cur_size = next_info.GetSize();
first = false;
}
// Advance.
cur_info = next_info;
cur_perm_eq = next_perm_eq;
cur_needs_set_perm = next_needs_set_perm;
++next_it;
}
// Process the last block.
const auto lock_count =
cur_info.GetIpcLockCount() +
(next_it != m_memory_block_manager.end()
? (next_it->GetIpcDisableMergeCount() - next_it->GetIpcLockCount())
: 0);
if ((first || cur_needs_set_perm || (lock_count == 1)) && !cur_perm_eq) {
const DisableMergeAttribute head_body_attr =
first ? DisableMergeAttribute::EnableHeadAndBody : DisableMergeAttribute::None;
const DisableMergeAttribute tail_attr =
lock_count == 1 ? DisableMergeAttribute::EnableTail : DisableMergeAttribute::None;
const KPageProperties properties = {
cur_needs_set_perm ? cur_info.GetOriginalPermission() : cur_info.GetPermission(),
false, false, static_cast<DisableMergeAttribute>(head_body_attr | tail_attr)};
R_TRY(this->Operate(updater.GetPageList(), cur_address, cur_size / PageSize, 0, false,
properties, OperationType::ChangePermissions, false));
}
}
// Create an update allocator.
// NOTE: Guaranteed zero blocks needed here.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, 0);
R_TRY(allocator_result);
// Unlock the pages.
m_memory_block_manager.UpdateLock(std::addressof(allocator), mapping_start,
mapping_size / PageSize, &KMemoryBlock::UnlockForIpc,
KMemoryPermission::None);
R_SUCCEED();
}
void KPageTableBase::CleanupForIpcClientOnServerSetupFailure(PageLinkedList* page_list,
KProcessAddress address, size_t size,
KMemoryPermission prot_perm) {
ASSERT(this->IsLockedByCurrentThread());
ASSERT(Common::IsAligned(GetInteger(address), PageSize));
ASSERT(Common::IsAligned(size, PageSize));
// Get the mapped extents.
const KProcessAddress src_map_start = address;
const KProcessAddress src_map_end = address + size;
const KProcessAddress src_map_last = src_map_end - 1;
// This function is only invoked when there's something to do.
ASSERT(src_map_end > src_map_start);
// Iterate over blocks, fixing permissions.
KMemoryBlockManager::const_iterator it = m_memory_block_manager.FindIterator(address);
while (true) {
const KMemoryInfo info = it->GetMemoryInfo();
const auto cur_start = info.GetAddress() >= GetInteger(src_map_start)
? info.GetAddress()
: GetInteger(src_map_start);
const auto cur_end =
src_map_last <= info.GetLastAddress() ? src_map_end : info.GetEndAddress();
// If we can, fix the protections on the block.
if ((info.GetIpcLockCount() == 0 &&
(info.GetPermission() & KMemoryPermission::IpcLockChangeMask) != prot_perm) ||
(info.GetIpcLockCount() != 0 &&
(info.GetOriginalPermission() & KMemoryPermission::IpcLockChangeMask) != prot_perm)) {
// Check if we actually need to fix the protections on the block.
if (cur_end == src_map_end || info.GetAddress() <= GetInteger(src_map_start) ||
(info.GetPermission() & KMemoryPermission::IpcLockChangeMask) != prot_perm) {
const bool start_nc = (info.GetAddress() == GetInteger(src_map_start))
? (False(info.GetDisableMergeAttribute() &
(KMemoryBlockDisableMergeAttribute::Locked |
KMemoryBlockDisableMergeAttribute::IpcLeft)))
: info.GetAddress() <= GetInteger(src_map_start);
const DisableMergeAttribute head_body_attr =
start_nc ? DisableMergeAttribute::EnableHeadAndBody
: DisableMergeAttribute::None;
DisableMergeAttribute tail_attr;
if (cur_end == src_map_end && info.GetEndAddress() == src_map_end) {
auto next_it = it;
++next_it;
const auto lock_count =
info.GetIpcLockCount() +
(next_it != m_memory_block_manager.end()
? (next_it->GetIpcDisableMergeCount() - next_it->GetIpcLockCount())
: 0);
tail_attr = lock_count == 0 ? DisableMergeAttribute::EnableTail
: DisableMergeAttribute::None;
} else {
tail_attr = DisableMergeAttribute::None;
}
const KPageProperties properties = {
info.GetPermission(), false, false,
static_cast<DisableMergeAttribute>(head_body_attr | tail_attr)};
R_ASSERT(this->Operate(page_list, cur_start, (cur_end - cur_start) / PageSize, 0,
false, properties, OperationType::ChangePermissions, true));
}
}
// If we're past the end of the region, we're done.
if (src_map_last <= info.GetLastAddress()) {
break;
}
// Advance.
++it;
ASSERT(it != m_memory_block_manager.end());
}
}
Result KPageTableBase::MapPhysicalMemory(KProcessAddress address, size_t size) {
// Lock the physical memory lock.
KScopedLightLock phys_lk(m_map_physical_memory_lock);
// Calculate the last address for convenience.
const KProcessAddress last_address = address + size - 1;
// Define iteration variables.
KProcessAddress cur_address;
size_t mapped_size;
// The entire mapping process can be retried.
while (true) {
// Check if the memory is already mapped.
{
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Iterate over the memory.
cur_address = address;
mapped_size = 0;
auto it = m_memory_block_manager.FindIterator(cur_address);
while (true) {
// Check that the iterator is valid.
ASSERT(it != m_memory_block_manager.end());
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
// Check if we're done.
if (last_address <= info.GetLastAddress()) {
if (info.GetState() != KMemoryState::Free) {
mapped_size += (last_address + 1 - cur_address);
}
break;
}
// Track the memory if it's mapped.
if (info.GetState() != KMemoryState::Free) {
mapped_size += KProcessAddress(info.GetEndAddress()) - cur_address;
}
// Advance.
cur_address = info.GetEndAddress();
++it;
}
// If the size mapped is the size requested, we've nothing to do.
R_SUCCEED_IF(size == mapped_size);
}
// Allocate and map the memory.
{
// Reserve the memory from the process resource limit.
KScopedResourceReservation memory_reservation(
m_resource_limit, Svc::LimitableResource::PhysicalMemoryMax, size - mapped_size);
R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
// Allocate pages for the new memory.
KPageGroup pg(m_kernel, m_block_info_manager);
R_TRY(m_kernel.MemoryManager().AllocateForProcess(
std::addressof(pg), (size - mapped_size) / PageSize, m_allocate_option,
GetCurrentProcess(m_kernel).GetId(), m_heap_fill_value));
// If we fail in the next bit (or retry), we need to cleanup the pages.
auto pg_guard = SCOPE_GUARD {
pg.OpenFirst();
pg.Close();
};
// Map the memory.
{
// Lock the table.
KScopedLightLock lk(m_general_lock);
size_t num_allocator_blocks = 0;
// Verify that nobody has mapped memory since we first checked.
{
// Iterate over the memory.
size_t checked_mapped_size = 0;
cur_address = address;
auto it = m_memory_block_manager.FindIterator(cur_address);
while (true) {
// Check that the iterator is valid.
ASSERT(it != m_memory_block_manager.end());
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
const bool is_free = info.GetState() == KMemoryState::Free;
if (is_free) {
if (info.GetAddress() < GetInteger(address)) {
++num_allocator_blocks;
}
if (last_address < info.GetLastAddress()) {
++num_allocator_blocks;
}
}
// Check if we're done.
if (last_address <= info.GetLastAddress()) {
if (!is_free) {
checked_mapped_size += (last_address + 1 - cur_address);
}
break;
}
// Track the memory if it's mapped.
if (!is_free) {
checked_mapped_size +=
KProcessAddress(info.GetEndAddress()) - cur_address;
}
// Advance.
cur_address = info.GetEndAddress();
++it;
}
// If the size now isn't what it was before, somebody mapped or unmapped
// concurrently. If this happened, retry.
if (mapped_size != checked_mapped_size) {
continue;
}
}
// Create an update allocator.
ASSERT(num_allocator_blocks <= KMemoryBlockManagerUpdateAllocator::MaxBlocks);
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager,
num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Prepare to iterate over the memory.
auto pg_it = pg.begin();
KPhysicalAddress pg_phys_addr = pg_it->GetAddress();
size_t pg_pages = pg_it->GetNumPages();
// Reset the current tracking address, and make sure we clean up on failure.
pg_guard.Cancel();
cur_address = address;
ON_RESULT_FAILURE {
if (cur_address > address) {
const KProcessAddress last_unmap_address = cur_address - 1;
// Iterate, unmapping the pages.
cur_address = address;
auto it = m_memory_block_manager.FindIterator(cur_address);
while (true) {
// Check that the iterator is valid.
ASSERT(it != m_memory_block_manager.end());
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
// If the memory state is free, we mapped it and need to unmap it.
if (info.GetState() == KMemoryState::Free) {
// Determine the range to unmap.
const KPageProperties unmap_properties = {
KMemoryPermission::None, false, false,
DisableMergeAttribute::None};
const size_t cur_pages =
std::min(KProcessAddress(info.GetEndAddress()) - cur_address,
last_unmap_address + 1 - cur_address) /
PageSize;
// Unmap.
R_ASSERT(this->Operate(updater.GetPageList(), cur_address,
cur_pages, 0, false, unmap_properties,
OperationType::UnmapPhysical, true));
}
// Check if we're done.
if (last_unmap_address <= info.GetLastAddress()) {
break;
}
// Advance.
cur_address = info.GetEndAddress();
++it;
}
}
// Release any remaining unmapped memory.
m_kernel.MemoryManager().OpenFirst(pg_phys_addr, pg_pages);
m_kernel.MemoryManager().Close(pg_phys_addr, pg_pages);
for (++pg_it; pg_it != pg.end(); ++pg_it) {
m_kernel.MemoryManager().OpenFirst(pg_it->GetAddress(),
pg_it->GetNumPages());
m_kernel.MemoryManager().Close(pg_it->GetAddress(), pg_it->GetNumPages());
}
};
auto it = m_memory_block_manager.FindIterator(cur_address);
while (true) {
// Check that the iterator is valid.
ASSERT(it != m_memory_block_manager.end());
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
// If it's unmapped, we need to map it.
if (info.GetState() == KMemoryState::Free) {
// Determine the range to map.
const KPageProperties map_properties = {
KMemoryPermission::UserReadWrite, false, false,
cur_address == this->GetAliasRegionStart()
? DisableMergeAttribute::DisableHead
: DisableMergeAttribute::None};
size_t map_pages =
std::min(KProcessAddress(info.GetEndAddress()) - cur_address,
last_address + 1 - cur_address) /
PageSize;
// While we have pages to map, map them.
{
// Create a page group for the current mapping range.
KPageGroup cur_pg(m_kernel, m_block_info_manager);
{
ON_RESULT_FAILURE_2 {
cur_pg.OpenFirst();
cur_pg.Close();
};
size_t remain_pages = map_pages;
while (remain_pages > 0) {
// Check if we're at the end of the physical block.
if (pg_pages == 0) {
// Ensure there are more pages to map.
ASSERT(pg_it != pg.end());
// Advance our physical block.
++pg_it;
pg_phys_addr = pg_it->GetAddress();
pg_pages = pg_it->GetNumPages();
}
// Add whatever we can to the current block.
const size_t cur_pages = std::min(pg_pages, remain_pages);
R_TRY(cur_pg.AddBlock(pg_phys_addr +
((pg_pages - cur_pages) * PageSize),
cur_pages));
// Advance.
remain_pages -= cur_pages;
pg_pages -= cur_pages;
}
}
// Map the papges.
R_TRY(this->Operate(updater.GetPageList(), cur_address, map_pages,
cur_pg, map_properties,
OperationType::MapFirstGroupPhysical, false));
}
}
// Check if we're done.
if (last_address <= info.GetLastAddress()) {
break;
}
// Advance.
cur_address = info.GetEndAddress();
++it;
}
// We succeeded, so commit the memory reservation.
memory_reservation.Commit();
// Increase our tracked mapped size.
m_mapped_physical_memory_size += (size - mapped_size);
// Update the relevant memory blocks.
m_memory_block_manager.UpdateIfMatch(
std::addressof(allocator), address, size / PageSize, KMemoryState::Free,
KMemoryPermission::None, KMemoryAttribute::None, KMemoryState::Normal,
KMemoryPermission::UserReadWrite, KMemoryAttribute::None,
address == this->GetAliasRegionStart()
? KMemoryBlockDisableMergeAttribute::Normal
: KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::None);
R_SUCCEED();
}
}
}
}
Result KPageTableBase::UnmapPhysicalMemory(KProcessAddress address, size_t size) {
// Lock the physical memory lock.
KScopedLightLock phys_lk(m_map_physical_memory_lock);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Calculate the last address for convenience.
const KProcessAddress last_address = address + size - 1;
// Define iteration variables.
KProcessAddress map_start_address = 0;
KProcessAddress map_last_address = 0;
KProcessAddress cur_address;
size_t mapped_size;
size_t num_allocator_blocks = 0;
// Check if the memory is mapped.
{
// Iterate over the memory.
cur_address = address;
mapped_size = 0;
auto it = m_memory_block_manager.FindIterator(cur_address);
while (true) {
// Check that the iterator is valid.
ASSERT(it != m_memory_block_manager.end());
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
// Verify the memory's state.
const bool is_normal = info.GetState() == KMemoryState::Normal &&
info.GetAttribute() == KMemoryAttribute::None;
const bool is_free = info.GetState() == KMemoryState::Free;
R_UNLESS(is_normal || is_free, ResultInvalidCurrentMemory);
if (is_normal) {
R_UNLESS(info.GetAttribute() == KMemoryAttribute::None, ResultInvalidCurrentMemory);
if (map_start_address == 0) {
map_start_address = cur_address;
}
map_last_address =
(last_address >= info.GetLastAddress()) ? info.GetLastAddress() : last_address;
if (info.GetAddress() < GetInteger(address)) {
++num_allocator_blocks;
}
if (last_address < info.GetLastAddress()) {
++num_allocator_blocks;
}
mapped_size += (map_last_address + 1 - cur_address);
}
// Check if we're done.
if (last_address <= info.GetLastAddress()) {
break;
}
// Advance.
cur_address = info.GetEndAddress();
++it;
}
// If there's nothing mapped, we've nothing to do.
R_SUCCEED_IF(mapped_size == 0);
}
// Create an update allocator.
ASSERT(num_allocator_blocks <= KMemoryBlockManagerUpdateAllocator::MaxBlocks);
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Separate the mapping.
const KPageProperties sep_properties = {KMemoryPermission::None, false, false,
DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), map_start_address,
(map_last_address + 1 - map_start_address) / PageSize, 0, false,
sep_properties, OperationType::Separate, false));
// Reset the current tracking address, and make sure we clean up on failure.
cur_address = address;
// Iterate over the memory, unmapping as we go.
auto it = m_memory_block_manager.FindIterator(cur_address);
const auto clear_merge_attr =
(it->GetState() == KMemoryState::Normal &&
it->GetAddress() == this->GetAliasRegionStart() && it->GetAddress() == address)
? KMemoryBlockDisableMergeAttribute::Normal
: KMemoryBlockDisableMergeAttribute::None;
while (true) {
// Check that the iterator is valid.
ASSERT(it != m_memory_block_manager.end());
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
// If the memory state is normal, we need to unmap it.
if (info.GetState() == KMemoryState::Normal) {
// Determine the range to unmap.
const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
DisableMergeAttribute::None};
const size_t cur_pages = std::min(KProcessAddress(info.GetEndAddress()) - cur_address,
last_address + 1 - cur_address) /
PageSize;
// Unmap.
R_ASSERT(this->Operate(updater.GetPageList(), cur_address, cur_pages, 0, false,
unmap_properties, OperationType::UnmapPhysical, false));
}
// Check if we're done.
if (last_address <= info.GetLastAddress()) {
break;
}
// Advance.
cur_address = info.GetEndAddress();
++it;
}
// Release the memory resource.
m_mapped_physical_memory_size -= mapped_size;
m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax, mapped_size);
// Update memory blocks.
m_memory_block_manager.Update(std::addressof(allocator), address, size / PageSize,
KMemoryState::Free, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
clear_merge_attr);
// We succeeded.
R_SUCCEED();
}
Result KPageTableBase::MapPhysicalMemoryUnsafe(KProcessAddress address, size_t size) {
UNIMPLEMENTED();
R_THROW(ResultNotImplemented);
}
Result KPageTableBase::UnmapPhysicalMemoryUnsafe(KProcessAddress address, size_t size) {
UNIMPLEMENTED();
R_THROW(ResultNotImplemented);
}
Result KPageTableBase::UnmapProcessMemory(KProcessAddress dst_address, size_t size,
KPageTableBase& src_page_table,
KProcessAddress src_address) {
// We need to lock both this table, and the current process's table, so set up an alias.
KPageTableBase& dst_page_table = *this;
// Acquire the table locks.
KScopedLightLockPair lk(src_page_table.m_general_lock, dst_page_table.m_general_lock);
// Check that the memory is mapped in the destination process.
size_t num_allocator_blocks;
R_TRY(dst_page_table.CheckMemoryState(
std::addressof(num_allocator_blocks), dst_address, size, KMemoryState::All,
KMemoryState::SharedCode, KMemoryPermission::UserReadWrite,
KMemoryPermission::UserReadWrite, KMemoryAttribute::All, KMemoryAttribute::None));
// Check that the memory is mapped in the source process.
R_TRY(src_page_table.CheckMemoryState(src_address, size, KMemoryState::FlagCanMapProcess,
KMemoryState::FlagCanMapProcess, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::All,
KMemoryAttribute::None));
// Validate that the memory ranges are compatible.
{
// Define a helper type.
struct ContiguousRangeInfo {
public:
KPageTableBase& m_pt;
TraversalContext m_context;
TraversalEntry m_entry;
KPhysicalAddress m_phys_addr;
size_t m_cur_size;
size_t m_remaining_size;
public:
ContiguousRangeInfo(KPageTableBase& pt, KProcessAddress address, size_t size)
: m_pt(pt), m_remaining_size(size) {
// Begin a traversal.
ASSERT(m_pt.GetImpl().BeginTraversal(std::addressof(m_entry),
std::addressof(m_context), address));
// Setup tracking fields.
m_phys_addr = m_entry.phys_addr;
m_cur_size = std::min<size_t>(
m_remaining_size,
m_entry.block_size - (GetInteger(m_phys_addr) & (m_entry.block_size - 1)));
// Consume the whole contiguous block.
this->DetermineContiguousBlockExtents();
}
void ContinueTraversal() {
// Update our remaining size.
m_remaining_size = m_remaining_size - m_cur_size;
// Update our tracking fields.
if (m_remaining_size > 0) {
m_phys_addr = m_entry.phys_addr;
m_cur_size = std::min<size_t>(m_remaining_size, m_entry.block_size);
// Consume the whole contiguous block.
this->DetermineContiguousBlockExtents();
}
}
private:
void DetermineContiguousBlockExtents() {
// Continue traversing until we're not contiguous, or we have enough.
while (m_cur_size < m_remaining_size) {
ASSERT(m_pt.GetImpl().ContinueTraversal(std::addressof(m_entry),
std::addressof(m_context)));
// If we're not contiguous, we're done.
if (m_entry.phys_addr != m_phys_addr + m_cur_size) {
break;
}
// Update our current size.
m_cur_size = std::min(m_remaining_size, m_cur_size + m_entry.block_size);
}
}
};
// Create ranges for both tables.
ContiguousRangeInfo src_range(src_page_table, src_address, size);
ContiguousRangeInfo dst_range(dst_page_table, dst_address, size);
// Validate the ranges.
while (src_range.m_remaining_size > 0 && dst_range.m_remaining_size > 0) {
R_UNLESS(src_range.m_phys_addr == dst_range.m_phys_addr, ResultInvalidMemoryRegion);
R_UNLESS(src_range.m_cur_size == dst_range.m_cur_size, ResultInvalidMemoryRegion);
src_range.ContinueTraversal();
dst_range.ContinueTraversal();
}
}
// We no longer need to hold our lock on the source page table.
lk.TryUnlockHalf(src_page_table.m_general_lock);
// Create an update allocator.
Result allocator_result;
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// We're going to perform an update, so create a helper.
KScopedPageTableUpdater updater(this);
// Unmap the memory.
const size_t num_pages = size / PageSize;
const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
DisableMergeAttribute::None};
R_TRY(this->Operate(updater.GetPageList(), dst_address, num_pages, 0, false, unmap_properties,
OperationType::Unmap, false));
// Apply the memory block update.
m_memory_block_manager.Update(std::addressof(allocator), dst_address, num_pages,
KMemoryState::Free, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal);
R_SUCCEED();
}
Result KPageTableBase::Operate(PageLinkedList* page_list, KProcessAddress virt_addr,
size_t num_pages, KPhysicalAddress phys_addr, bool is_pa_valid,
const KPageProperties properties, OperationType operation,
bool reuse_ll) {
ASSERT(this->IsLockedByCurrentThread());
ASSERT(num_pages > 0);
ASSERT(Common::IsAligned(GetInteger(virt_addr), PageSize));
ASSERT(this->ContainsPages(virt_addr, num_pages));
// As we don't allocate page entries in guest memory, we don't need to allocate them from
// or free them to the page list, and so it goes unused (along with page properties).
switch (operation) {
case OperationType::Unmap:
case OperationType::UnmapPhysical: {
const bool separate_heap = operation == OperationType::UnmapPhysical;
// Ensure that any pages we track are closed on exit.
KPageGroup pages_to_close(m_kernel, this->GetBlockInfoManager());
SCOPE_EXIT {
pages_to_close.CloseAndReset();
};
// Make a page group representing the region to unmap.
this->MakePageGroup(pages_to_close, virt_addr, num_pages);
// Unmap.
m_memory->UnmapRegion(*m_impl, virt_addr, num_pages * PageSize, separate_heap);
R_SUCCEED();
}
case OperationType::Map: {
ASSERT(virt_addr != 0);
ASSERT(Common::IsAligned(GetInteger(virt_addr), PageSize));
m_memory->MapMemoryRegion(*m_impl, virt_addr, num_pages * PageSize, phys_addr,
ConvertToMemoryPermission(properties.perm), false);
// Open references to pages, if we should.
if (this->IsHeapPhysicalAddress(phys_addr)) {
m_kernel.MemoryManager().Open(phys_addr, num_pages);
}
R_SUCCEED();
}
case OperationType::Separate: {
// TODO: Unimplemented.
R_SUCCEED();
}
case OperationType::ChangePermissions:
case OperationType::ChangePermissionsAndRefresh:
case OperationType::ChangePermissionsAndRefreshAndFlush: {
m_memory->ProtectRegion(*m_impl, virt_addr, num_pages * PageSize,
ConvertToMemoryPermission(properties.perm));
R_SUCCEED();
}
default:
UNREACHABLE();
}
}
Result KPageTableBase::Operate(PageLinkedList* page_list, KProcessAddress virt_addr,
size_t num_pages, const KPageGroup& page_group,
const KPageProperties properties, OperationType operation,
bool reuse_ll) {
ASSERT(this->IsLockedByCurrentThread());
ASSERT(Common::IsAligned(GetInteger(virt_addr), PageSize));
ASSERT(num_pages > 0);
ASSERT(num_pages == page_group.GetNumPages());
// As we don't allocate page entries in guest memory, we don't need to allocate them from
// the page list, and so it goes unused (along with page properties).
switch (operation) {
case OperationType::MapGroup:
case OperationType::MapFirstGroup:
case OperationType::MapFirstGroupPhysical: {
const bool separate_heap = operation == OperationType::MapFirstGroupPhysical;
// We want to maintain a new reference to every page in the group.
KScopedPageGroup spg(page_group, operation == OperationType::MapGroup);
for (const auto& node : page_group) {
const size_t size{node.GetNumPages() * PageSize};
// Map the pages.
m_memory->MapMemoryRegion(*m_impl, virt_addr, size, node.GetAddress(),
ConvertToMemoryPermission(properties.perm), separate_heap);
virt_addr += size;
}
// We succeeded! We want to persist the reference to the pages.
spg.CancelClose();
R_SUCCEED();
}
default:
UNREACHABLE();
}
}
void KPageTableBase::FinalizeUpdate(PageLinkedList* page_list) {
while (page_list->Peek()) {
[[maybe_unused]] auto page = page_list->Pop();
// TODO: Free page entries once they are allocated in guest memory.
// ASSERT(this->GetPageTableManager().IsInPageTableHeap(page));
// ASSERT(this->GetPageTableManager().GetRefCount(page) == 0);
// this->GetPageTableManager().Free(page);
}
}
} // namespace Kernel